Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{-116}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}=-\frac{29}{2}
Whakahekea te hautanga \frac{-116}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{\sqrt{58}i}{2} x=-\frac{\sqrt{58}i}{2}
Kua oti te whārite te whakatau.
x^{2}=\frac{-116}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}=-\frac{29}{2}
Whakahekea te hautanga \frac{-116}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}+\frac{29}{2}=0
Me tāpiri te \frac{29}{2} ki ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times \frac{29}{2}}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me \frac{29}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{29}{2}}}{2}
Pūrua 0.
x=\frac{0±\sqrt{-58}}{2}
Whakareatia -4 ki te \frac{29}{2}.
x=\frac{0±\sqrt{58}i}{2}
Tuhia te pūtakerua o te -58.
x=\frac{\sqrt{58}i}{2}
Nā, me whakaoti te whārite x=\frac{0±\sqrt{58}i}{2} ina he tāpiri te ±.
x=-\frac{\sqrt{58}i}{2}
Nā, me whakaoti te whārite x=\frac{0±\sqrt{58}i}{2} ina he tango te ±.
x=\frac{\sqrt{58}i}{2} x=-\frac{\sqrt{58}i}{2}
Kua oti te whārite te whakatau.