Whakaoti mō x
x=\frac{\sqrt{97}-1}{16}\approx 0.553053613
x=\frac{-\sqrt{97}-1}{16}\approx -0.678053613
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x^{2}+x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times 8\left(-3\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 1 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 8\left(-3\right)}}{2\times 8}
Pūrua 1.
x=\frac{-1±\sqrt{1-32\left(-3\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-1±\sqrt{1+96}}{2\times 8}
Whakareatia -32 ki te -3.
x=\frac{-1±\sqrt{97}}{2\times 8}
Tāpiri 1 ki te 96.
x=\frac{-1±\sqrt{97}}{16}
Whakareatia 2 ki te 8.
x=\frac{\sqrt{97}-1}{16}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{97}}{16} ina he tāpiri te ±. Tāpiri -1 ki te \sqrt{97}.
x=\frac{-\sqrt{97}-1}{16}
Nā, me whakaoti te whārite x=\frac{-1±\sqrt{97}}{16} ina he tango te ±. Tango \sqrt{97} mai i -1.
x=\frac{\sqrt{97}-1}{16} x=\frac{-\sqrt{97}-1}{16}
Kua oti te whārite te whakatau.
8x^{2}+x-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
8x^{2}+x-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
8x^{2}+x=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
8x^{2}+x=3
Tango -3 mai i 0.
\frac{8x^{2}+x}{8}=\frac{3}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\frac{1}{8}x=\frac{3}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}+\frac{1}{8}x+\left(\frac{1}{16}\right)^{2}=\frac{3}{8}+\left(\frac{1}{16}\right)^{2}
Whakawehea te \frac{1}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{16}. Nā, tāpiria te pūrua o te \frac{1}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{8}x+\frac{1}{256}=\frac{3}{8}+\frac{1}{256}
Pūruatia \frac{1}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{8}x+\frac{1}{256}=\frac{97}{256}
Tāpiri \frac{3}{8} ki te \frac{1}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{16}\right)^{2}=\frac{97}{256}
Tauwehea x^{2}+\frac{1}{8}x+\frac{1}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{16}\right)^{2}}=\sqrt{\frac{97}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{16}=\frac{\sqrt{97}}{16} x+\frac{1}{16}=-\frac{\sqrt{97}}{16}
Whakarūnātia.
x=\frac{\sqrt{97}-1}{16} x=\frac{-\sqrt{97}-1}{16}
Me tango \frac{1}{16} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}