Whakaoti mō x
x=\sqrt{38}\approx 6.164414003
x=-\sqrt{38}\approx -6.164414003
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x^{2}=313-9
Tangohia te 9 mai i ngā taha e rua.
8x^{2}=304
Tangohia te 9 i te 313, ka 304.
x^{2}=\frac{304}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}=38
Whakawehea te 304 ki te 8, kia riro ko 38.
x=\sqrt{38} x=-\sqrt{38}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
8x^{2}+9-313=0
Tangohia te 313 mai i ngā taha e rua.
8x^{2}-304=0
Tangohia te 313 i te 9, ka -304.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-304\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 0 mō b, me -304 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-304\right)}}{2\times 8}
Pūrua 0.
x=\frac{0±\sqrt{-32\left(-304\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{0±\sqrt{9728}}{2\times 8}
Whakareatia -32 ki te -304.
x=\frac{0±16\sqrt{38}}{2\times 8}
Tuhia te pūtakerua o te 9728.
x=\frac{0±16\sqrt{38}}{16}
Whakareatia 2 ki te 8.
x=\sqrt{38}
Nā, me whakaoti te whārite x=\frac{0±16\sqrt{38}}{16} ina he tāpiri te ±.
x=-\sqrt{38}
Nā, me whakaoti te whārite x=\frac{0±16\sqrt{38}}{16} ina he tango te ±.
x=\sqrt{38} x=-\sqrt{38}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}