Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x^{2}+8x-1=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 8\left(-1\right)}}{2\times 8}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 8 mō te a, te 8 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{-8±4\sqrt{6}}{16}
Mahia ngā tātaitai.
x=\frac{\sqrt{6}}{4}-\frac{1}{2} x=-\frac{\sqrt{6}}{4}-\frac{1}{2}
Whakaotia te whārite x=\frac{-8±4\sqrt{6}}{16} ina he tōrunga te ±, ina he tōraro te ±.
8\left(x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\leq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
Kia ≤0 te otinga, me ≥0 rawa tētahi uara o x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right) me x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right), me ≤0 anō te uara o tētahi. Whakaarohia te tauira ina ko x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 me x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
Whakaarohia te tauira ina ko x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0 me x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0.
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left[-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\right].
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.