Whakaoti mō x
x=\frac{3\sqrt{10}}{4}-3\approx -0.628291755
x=-\frac{3\sqrt{10}}{4}-3\approx -5.371708245
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x^{2}+48x+27=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-48±\sqrt{48^{2}-4\times 8\times 27}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 48 mō b, me 27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 8\times 27}}{2\times 8}
Pūrua 48.
x=\frac{-48±\sqrt{2304-32\times 27}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-48±\sqrt{2304-864}}{2\times 8}
Whakareatia -32 ki te 27.
x=\frac{-48±\sqrt{1440}}{2\times 8}
Tāpiri 2304 ki te -864.
x=\frac{-48±12\sqrt{10}}{2\times 8}
Tuhia te pūtakerua o te 1440.
x=\frac{-48±12\sqrt{10}}{16}
Whakareatia 2 ki te 8.
x=\frac{12\sqrt{10}-48}{16}
Nā, me whakaoti te whārite x=\frac{-48±12\sqrt{10}}{16} ina he tāpiri te ±. Tāpiri -48 ki te 12\sqrt{10}.
x=\frac{3\sqrt{10}}{4}-3
Whakawehe -48+12\sqrt{10} ki te 16.
x=\frac{-12\sqrt{10}-48}{16}
Nā, me whakaoti te whārite x=\frac{-48±12\sqrt{10}}{16} ina he tango te ±. Tango 12\sqrt{10} mai i -48.
x=-\frac{3\sqrt{10}}{4}-3
Whakawehe -48-12\sqrt{10} ki te 16.
x=\frac{3\sqrt{10}}{4}-3 x=-\frac{3\sqrt{10}}{4}-3
Kua oti te whārite te whakatau.
8x^{2}+48x+27=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
8x^{2}+48x+27-27=-27
Me tango 27 mai i ngā taha e rua o te whārite.
8x^{2}+48x=-27
Mā te tango i te 27 i a ia ake anō ka toe ko te 0.
\frac{8x^{2}+48x}{8}=-\frac{27}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}+\frac{48}{8}x=-\frac{27}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}+6x=-\frac{27}{8}
Whakawehe 48 ki te 8.
x^{2}+6x+3^{2}=-\frac{27}{8}+3^{2}
Whakawehea te 6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 3. Nā, tāpiria te pūrua o te 3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+6x+9=-\frac{27}{8}+9
Pūrua 3.
x^{2}+6x+9=\frac{45}{8}
Tāpiri -\frac{27}{8} ki te 9.
\left(x+3\right)^{2}=\frac{45}{8}
Tauwehea x^{2}+6x+9. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{\frac{45}{8}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+3=\frac{3\sqrt{10}}{4} x+3=-\frac{3\sqrt{10}}{4}
Whakarūnātia.
x=\frac{3\sqrt{10}}{4}-3 x=-\frac{3\sqrt{10}}{4}-3
Me tango 3 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}