Tīpoka ki ngā ihirangi matua
Whakaoti mō A (complex solution)
Tick mark Image
Whakaoti mō A
Tick mark Image
Whakaoti mō B
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x^{2}+83=2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2
Tāpirihia te 36 ki te 47, ka 83.
2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2Ax^{2}+7Ax+6A+9B+3x^{2}+5x-2=8x^{2}+83-6Bx
Tangohia te 6Bx mai i ngā taha e rua.
2Ax^{2}+7Ax+6A+3x^{2}+5x-2=8x^{2}+83-6Bx-9B
Tangohia te 9B mai i ngā taha e rua.
2Ax^{2}+7Ax+6A+5x-2=8x^{2}+83-6Bx-9B-3x^{2}
Tangohia te 3x^{2} mai i ngā taha e rua.
2Ax^{2}+7Ax+6A+5x-2=5x^{2}+83-6Bx-9B
Pahekotia te 8x^{2} me -3x^{2}, ka 5x^{2}.
2Ax^{2}+7Ax+6A-2=5x^{2}+83-6Bx-9B-5x
Tangohia te 5x mai i ngā taha e rua.
2Ax^{2}+7Ax+6A=5x^{2}+83-6Bx-9B-5x+2
Me tāpiri te 2 ki ngā taha e rua.
2Ax^{2}+7Ax+6A=5x^{2}+85-6Bx-9B-5x
Tāpirihia te 83 ki te 2, ka 85.
\left(2x^{2}+7x+6\right)A=5x^{2}+85-6Bx-9B-5x
Pahekotia ngā kīanga tau katoa e whai ana i te A.
\left(2x^{2}+7x+6\right)A=5x^{2}-6Bx-5x-9B+85
He hanga arowhānui tō te whārite.
\frac{\left(2x^{2}+7x+6\right)A}{2x^{2}+7x+6}=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
Whakawehea ngā taha e rua ki te 2x^{2}+7x+6.
A=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
Mā te whakawehe ki te 2x^{2}+7x+6 ka wetekia te whakareanga ki te 2x^{2}+7x+6.
A=\frac{5x^{2}-6Bx-5x-9B+85}{\left(x+2\right)\left(2x+3\right)}
Whakawehe 5x^{2}+85-6Bx-9B-5x ki te 2x^{2}+7x+6.
8x^{2}+83=2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2
Tāpirihia te 36 ki te 47, ka 83.
2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2Ax^{2}+7Ax+6A+9B+3x^{2}+5x-2=8x^{2}+83-6Bx
Tangohia te 6Bx mai i ngā taha e rua.
2Ax^{2}+7Ax+6A+3x^{2}+5x-2=8x^{2}+83-6Bx-9B
Tangohia te 9B mai i ngā taha e rua.
2Ax^{2}+7Ax+6A+5x-2=8x^{2}+83-6Bx-9B-3x^{2}
Tangohia te 3x^{2} mai i ngā taha e rua.
2Ax^{2}+7Ax+6A+5x-2=5x^{2}+83-6Bx-9B
Pahekotia te 8x^{2} me -3x^{2}, ka 5x^{2}.
2Ax^{2}+7Ax+6A-2=5x^{2}+83-6Bx-9B-5x
Tangohia te 5x mai i ngā taha e rua.
2Ax^{2}+7Ax+6A=5x^{2}+83-6Bx-9B-5x+2
Me tāpiri te 2 ki ngā taha e rua.
2Ax^{2}+7Ax+6A=5x^{2}+85-6Bx-9B-5x
Tāpirihia te 83 ki te 2, ka 85.
\left(2x^{2}+7x+6\right)A=5x^{2}+85-6Bx-9B-5x
Pahekotia ngā kīanga tau katoa e whai ana i te A.
\left(2x^{2}+7x+6\right)A=5x^{2}-6Bx-5x-9B+85
He hanga arowhānui tō te whārite.
\frac{\left(2x^{2}+7x+6\right)A}{2x^{2}+7x+6}=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
Whakawehea ngā taha e rua ki te 2x^{2}+7x+6.
A=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
Mā te whakawehe ki te 2x^{2}+7x+6 ka wetekia te whakareanga ki te 2x^{2}+7x+6.
A=\frac{5x^{2}-6Bx-5x-9B+85}{\left(x+2\right)\left(2x+3\right)}
Whakawehe 5x^{2}+85-6Bx-9B-5x ki te 2x^{2}+7x+6.
8x^{2}+83=2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2
Tāpirihia te 36 ki te 47, ka 83.
2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83-2Ax^{2}
Tangohia te 2Ax^{2} mai i ngā taha e rua.
6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83-2Ax^{2}-7Ax
Tangohia te 7Ax mai i ngā taha e rua.
6Bx+9B+3x^{2}+5x-2=8x^{2}+83-2Ax^{2}-7Ax-6A
Tangohia te 6A mai i ngā taha e rua.
6Bx+9B+5x-2=8x^{2}+83-2Ax^{2}-7Ax-6A-3x^{2}
Tangohia te 3x^{2} mai i ngā taha e rua.
6Bx+9B-2=8x^{2}+83-2Ax^{2}-7Ax-6A-3x^{2}-5x
Tangohia te 5x mai i ngā taha e rua.
6Bx+9B=8x^{2}+83-2Ax^{2}-7Ax-6A-3x^{2}-5x+2
Me tāpiri te 2 ki ngā taha e rua.
6Bx+9B=5x^{2}+83-2Ax^{2}-7Ax-6A-5x+2
Pahekotia te 8x^{2} me -3x^{2}, ka 5x^{2}.
6Bx+9B=5x^{2}+85-2Ax^{2}-7Ax-6A-5x
Tāpirihia te 83 ki te 2, ka 85.
\left(6x+9\right)B=5x^{2}+85-2Ax^{2}-7Ax-6A-5x
Pahekotia ngā kīanga tau katoa e whai ana i te B.
\left(6x+9\right)B=85-6A-5x-7Ax+5x^{2}-2Ax^{2}
He hanga arowhānui tō te whārite.
\frac{\left(6x+9\right)B}{6x+9}=\frac{85-6A-5x-7Ax+5x^{2}-2Ax^{2}}{6x+9}
Whakawehea ngā taha e rua ki te 6x+9.
B=\frac{85-6A-5x-7Ax+5x^{2}-2Ax^{2}}{6x+9}
Mā te whakawehe ki te 6x+9 ka wetekia te whakareanga ki te 6x+9.
B=\frac{85-6A-5x-7Ax+5x^{2}-2Ax^{2}}{3\left(2x+3\right)}
Whakawehe 5x^{2}+85-2Ax^{2}-7Ax-6A-5x ki te 6x+9.