Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=10 ab=8\left(-3\right)=-24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 8x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-2 b=12
Ko te otinga te takirua ka hoatu i te tapeke 10.
\left(8x^{2}-2x\right)+\left(12x-3\right)
Tuhia anō te 8x^{2}+10x-3 hei \left(8x^{2}-2x\right)+\left(12x-3\right).
2x\left(4x-1\right)+3\left(4x-1\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(4x-1\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 4x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
8x^{2}+10x-3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-10±\sqrt{10^{2}-4\times 8\left(-3\right)}}{2\times 8}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-10±\sqrt{100-4\times 8\left(-3\right)}}{2\times 8}
Pūrua 10.
x=\frac{-10±\sqrt{100-32\left(-3\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-10±\sqrt{100+96}}{2\times 8}
Whakareatia -32 ki te -3.
x=\frac{-10±\sqrt{196}}{2\times 8}
Tāpiri 100 ki te 96.
x=\frac{-10±14}{2\times 8}
Tuhia te pūtakerua o te 196.
x=\frac{-10±14}{16}
Whakareatia 2 ki te 8.
x=\frac{4}{16}
Nā, me whakaoti te whārite x=\frac{-10±14}{16} ina he tāpiri te ±. Tāpiri -10 ki te 14.
x=\frac{1}{4}
Whakahekea te hautanga \frac{4}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{24}{16}
Nā, me whakaoti te whārite x=\frac{-10±14}{16} ina he tango te ±. Tango 14 mai i -10.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-24}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
8x^{2}+10x-3=8\left(x-\frac{1}{4}\right)\left(x-\left(-\frac{3}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{4} mō te x_{1} me te -\frac{3}{2} mō te x_{2}.
8x^{2}+10x-3=8\left(x-\frac{1}{4}\right)\left(x+\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
8x^{2}+10x-3=8\times \frac{4x-1}{4}\left(x+\frac{3}{2}\right)
Tango \frac{1}{4} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8x^{2}+10x-3=8\times \frac{4x-1}{4}\times \frac{2x+3}{2}
Tāpiri \frac{3}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8x^{2}+10x-3=8\times \frac{\left(4x-1\right)\left(2x+3\right)}{4\times 2}
Whakareatia \frac{4x-1}{4} ki te \frac{2x+3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8x^{2}+10x-3=8\times \frac{\left(4x-1\right)\left(2x+3\right)}{8}
Whakareatia 4 ki te 2.
8x^{2}+10x-3=\left(4x-1\right)\left(2x+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 8 i roto i te 8 me te 8.