Whakaoti mō x (complex solution)
x=2+2\sqrt{3}i\approx 2+3.464101615i
x=-2\sqrt{3}i+2\approx 2-3.464101615i
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+3-3x^{2}=35-x^{2}
Tāpirihia te 2 ki te 1, ka 3.
8x+3-3x^{2}-35=-x^{2}
Tangohia te 35 mai i ngā taha e rua.
8x-32-3x^{2}=-x^{2}
Tangohia te 35 i te 3, ka -32.
8x-32-3x^{2}+x^{2}=0
Me tāpiri te x^{2} ki ngā taha e rua.
8x-32-2x^{2}=0
Pahekotia te -3x^{2} me x^{2}, ka -2x^{2}.
-2x^{2}+8x-32=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-32\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 8 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-32\right)}}{2\left(-2\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+8\left(-32\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-8±\sqrt{64-256}}{2\left(-2\right)}
Whakareatia 8 ki te -32.
x=\frac{-8±\sqrt{-192}}{2\left(-2\right)}
Tāpiri 64 ki te -256.
x=\frac{-8±8\sqrt{3}i}{2\left(-2\right)}
Tuhia te pūtakerua o te -192.
x=\frac{-8±8\sqrt{3}i}{-4}
Whakareatia 2 ki te -2.
x=\frac{-8+8\sqrt{3}i}{-4}
Nā, me whakaoti te whārite x=\frac{-8±8\sqrt{3}i}{-4} ina he tāpiri te ±. Tāpiri -8 ki te 8i\sqrt{3}.
x=-2\sqrt{3}i+2
Whakawehe -8+8i\sqrt{3} ki te -4.
x=\frac{-8\sqrt{3}i-8}{-4}
Nā, me whakaoti te whārite x=\frac{-8±8\sqrt{3}i}{-4} ina he tango te ±. Tango 8i\sqrt{3} mai i -8.
x=2+2\sqrt{3}i
Whakawehe -8-8i\sqrt{3} ki te -4.
x=-2\sqrt{3}i+2 x=2+2\sqrt{3}i
Kua oti te whārite te whakatau.
8x+3-3x^{2}=35-x^{2}
Tāpirihia te 2 ki te 1, ka 3.
8x+3-3x^{2}+x^{2}=35
Me tāpiri te x^{2} ki ngā taha e rua.
8x+3-2x^{2}=35
Pahekotia te -3x^{2} me x^{2}, ka -2x^{2}.
8x-2x^{2}=35-3
Tangohia te 3 mai i ngā taha e rua.
8x-2x^{2}=32
Tangohia te 3 i te 35, ka 32.
-2x^{2}+8x=32
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+8x}{-2}=\frac{32}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{8}{-2}x=\frac{32}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-4x=\frac{32}{-2}
Whakawehe 8 ki te -2.
x^{2}-4x=-16
Whakawehe 32 ki te -2.
x^{2}-4x+\left(-2\right)^{2}=-16+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-16+4
Pūrua -2.
x^{2}-4x+4=-12
Tāpiri -16 ki te 4.
\left(x-2\right)^{2}=-12
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-12}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=2\sqrt{3}i x-2=-2\sqrt{3}i
Whakarūnātia.
x=2+2\sqrt{3}i x=-2\sqrt{3}i+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}