Whakaoti mō x
x=-\frac{6}{7}\approx -0.857142857
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-2.
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x-2.
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x^{2}-16x ki te x+2 ka whakakotahi i ngā kupu rite.
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+2 ka whakakotahi i ngā kupu rite.
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-4 ki te 16.
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
Tuhia te \left(x-2\right)\times \frac{1}{x-2} hei hautanga kotahi.
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 8x^{2}-25.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Tuhia te \frac{x-2}{x-2}\times 8 hei hautanga kotahi.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 8x^{3}-32x+16x^{2}-64 ki te \frac{x-2}{x-2}.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Tā te mea he rite te tauraro o \frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} me \frac{\left(x-2\right)\times 8}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16}{x-2}=8x^{3}-25x+16x^{2}-50
Mahia ngā whakarea i roto o \left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}=8x^{3}-25x+16x^{2}-50
Whakakotahitia ngā kupu rite i 8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}-8x^{3}=-25x+16x^{2}-50
Tangohia te 8x^{3} mai i ngā taha e rua.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -8x^{3} ki te \frac{x-2}{x-2}.
\frac{8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
Tā te mea he rite te tauraro o \frac{8x^{4}-64x^{2}+8x+112}{x-2} me \frac{-8x^{3}\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
Mahia ngā whakarea i roto o 8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right).
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}=-25x+16x^{2}-50
Whakakotahitia ngā kupu rite i 8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}.
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+25x=16x^{2}-50
Me tāpiri te 25x ki ngā taha e rua.
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 25x ki te \frac{x-2}{x-2}.
\frac{-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
Tā te mea he rite te tauraro o \frac{-64x^{2}+8x+112+16x^{3}}{x-2} me \frac{25x\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-64x^{2}+8x+112+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
Mahia ngā whakarea i roto o -64x^{2}+8x+112+16x^{3}+25x\left(x-2\right).
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}=16x^{2}-50
Whakakotahitia ngā kupu rite i -64x^{2}+8x+112+16x^{3}+25x^{2}-50x.
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}-16x^{2}=-50
Tangohia te 16x^{2} mai i ngā taha e rua.
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -16x^{2} ki te \frac{x-2}{x-2}.
\frac{-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
Tā te mea he rite te tauraro o \frac{-39x^{2}-42x+112+16x^{3}}{x-2} me \frac{-16x^{2}\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
Mahia ngā whakarea i roto o -39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right).
\frac{-7x^{2}-42x+112}{x-2}=-50
Whakakotahitia ngā kupu rite i -39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}.
\frac{-7x^{2}-42x+112}{x-2}+50=0
Me tāpiri te 50 ki ngā taha e rua.
\frac{-7x^{2}-42x+112}{x-2}+\frac{50\left(x-2\right)}{x-2}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 50 ki te \frac{x-2}{x-2}.
\frac{-7x^{2}-42x+112+50\left(x-2\right)}{x-2}=0
Tā te mea he rite te tauraro o \frac{-7x^{2}-42x+112}{x-2} me \frac{50\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-7x^{2}-42x+112+50x-100}{x-2}=0
Mahia ngā whakarea i roto o -7x^{2}-42x+112+50\left(x-2\right).
\frac{-7x^{2}+8x+12}{x-2}=0
Whakakotahitia ngā kupu rite i -7x^{2}-42x+112+50x-100.
-7x^{2}+8x+12=0
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
a+b=8 ab=-7\times 12=-84
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -7x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,84 -2,42 -3,28 -4,21 -6,14 -7,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -84.
-1+84=83 -2+42=40 -3+28=25 -4+21=17 -6+14=8 -7+12=5
Tātaihia te tapeke mō ia takirua.
a=14 b=-6
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(-7x^{2}+14x\right)+\left(-6x+12\right)
Tuhia anō te -7x^{2}+8x+12 hei \left(-7x^{2}+14x\right)+\left(-6x+12\right).
7x\left(-x+2\right)+6\left(-x+2\right)
Tauwehea te 7x i te tuatahi me te 6 i te rōpū tuarua.
\left(-x+2\right)\left(7x+6\right)
Whakatauwehea atu te kīanga pātahi -x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=-\frac{6}{7}
Hei kimi otinga whārite, me whakaoti te -x+2=0 me te 7x+6=0.
x=-\frac{6}{7}
Tē taea kia ōrite te tāupe x ki 2.
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-2.
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x-2.
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x^{2}-16x ki te x+2 ka whakakotahi i ngā kupu rite.
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+2 ka whakakotahi i ngā kupu rite.
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-4 ki te 16.
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
Tuhia te \left(x-2\right)\times \frac{1}{x-2} hei hautanga kotahi.
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 8x^{2}-25.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Tuhia te \frac{x-2}{x-2}\times 8 hei hautanga kotahi.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 8x^{3}-32x+16x^{2}-64 ki te \frac{x-2}{x-2}.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Tā te mea he rite te tauraro o \frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} me \frac{\left(x-2\right)\times 8}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16}{x-2}=8x^{3}-25x+16x^{2}-50
Mahia ngā whakarea i roto o \left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}=8x^{3}-25x+16x^{2}-50
Whakakotahitia ngā kupu rite i 8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}-8x^{3}=-25x+16x^{2}-50
Tangohia te 8x^{3} mai i ngā taha e rua.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -8x^{3} ki te \frac{x-2}{x-2}.
\frac{8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
Tā te mea he rite te tauraro o \frac{8x^{4}-64x^{2}+8x+112}{x-2} me \frac{-8x^{3}\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
Mahia ngā whakarea i roto o 8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right).
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}=-25x+16x^{2}-50
Whakakotahitia ngā kupu rite i 8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}.
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+25x=16x^{2}-50
Me tāpiri te 25x ki ngā taha e rua.
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 25x ki te \frac{x-2}{x-2}.
\frac{-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
Tā te mea he rite te tauraro o \frac{-64x^{2}+8x+112+16x^{3}}{x-2} me \frac{25x\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-64x^{2}+8x+112+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
Mahia ngā whakarea i roto o -64x^{2}+8x+112+16x^{3}+25x\left(x-2\right).
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}=16x^{2}-50
Whakakotahitia ngā kupu rite i -64x^{2}+8x+112+16x^{3}+25x^{2}-50x.
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}-16x^{2}=-50
Tangohia te 16x^{2} mai i ngā taha e rua.
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -16x^{2} ki te \frac{x-2}{x-2}.
\frac{-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
Tā te mea he rite te tauraro o \frac{-39x^{2}-42x+112+16x^{3}}{x-2} me \frac{-16x^{2}\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
Mahia ngā whakarea i roto o -39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right).
\frac{-7x^{2}-42x+112}{x-2}=-50
Whakakotahitia ngā kupu rite i -39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}.
\frac{-7x^{2}-42x+112}{x-2}+50=0
Me tāpiri te 50 ki ngā taha e rua.
\frac{-7x^{2}-42x+112}{x-2}+\frac{50\left(x-2\right)}{x-2}=0
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 50 ki te \frac{x-2}{x-2}.
\frac{-7x^{2}-42x+112+50\left(x-2\right)}{x-2}=0
Tā te mea he rite te tauraro o \frac{-7x^{2}-42x+112}{x-2} me \frac{50\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-7x^{2}-42x+112+50x-100}{x-2}=0
Mahia ngā whakarea i roto o -7x^{2}-42x+112+50\left(x-2\right).
\frac{-7x^{2}+8x+12}{x-2}=0
Whakakotahitia ngā kupu rite i -7x^{2}-42x+112+50x-100.
-7x^{2}+8x+12=0
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
x=\frac{-8±\sqrt{8^{2}-4\left(-7\right)\times 12}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, 8 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-7\right)\times 12}}{2\left(-7\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+28\times 12}}{2\left(-7\right)}
Whakareatia -4 ki te -7.
x=\frac{-8±\sqrt{64+336}}{2\left(-7\right)}
Whakareatia 28 ki te 12.
x=\frac{-8±\sqrt{400}}{2\left(-7\right)}
Tāpiri 64 ki te 336.
x=\frac{-8±20}{2\left(-7\right)}
Tuhia te pūtakerua o te 400.
x=\frac{-8±20}{-14}
Whakareatia 2 ki te -7.
x=\frac{12}{-14}
Nā, me whakaoti te whārite x=\frac{-8±20}{-14} ina he tāpiri te ±. Tāpiri -8 ki te 20.
x=-\frac{6}{7}
Whakahekea te hautanga \frac{12}{-14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{28}{-14}
Nā, me whakaoti te whārite x=\frac{-8±20}{-14} ina he tango te ±. Tango 20 mai i -8.
x=2
Whakawehe -28 ki te -14.
x=-\frac{6}{7} x=2
Kua oti te whārite te whakatau.
x=-\frac{6}{7}
Tē taea kia ōrite te tāupe x ki 2.
8x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+2,x-2.
\left(8x^{2}-16x\right)\left(x+2\right)+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8x ki te x-2.
8x^{3}-32x+\left(x-2\right)\left(x+2\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x^{2}-16x ki te x+2 ka whakakotahi i ngā kupu rite.
8x^{3}-32x+\left(x^{2}-4\right)\times 16+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+2 ka whakakotahi i ngā kupu rite.
8x^{3}-32x+16x^{2}-64+\left(x-2\right)\times 8\times \frac{1}{x-2}=\left(x+2\right)\left(8x^{2}-25\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-4 ki te 16.
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=\left(x+2\right)\left(8x^{2}-25\right)
Tuhia te \left(x-2\right)\times \frac{1}{x-2} hei hautanga kotahi.
8x^{3}-32x+16x^{2}-64+\frac{x-2}{x-2}\times 8=8x^{3}-25x+16x^{2}-50
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te 8x^{2}-25.
8x^{3}-32x+16x^{2}-64+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Tuhia te \frac{x-2}{x-2}\times 8 hei hautanga kotahi.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2}+\frac{\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 8x^{3}-32x+16x^{2}-64 ki te \frac{x-2}{x-2}.
\frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8}{x-2}=8x^{3}-25x+16x^{2}-50
Tā te mea he rite te tauraro o \frac{\left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)}{x-2} me \frac{\left(x-2\right)\times 8}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16}{x-2}=8x^{3}-25x+16x^{2}-50
Mahia ngā whakarea i roto o \left(8x^{3}-32x+16x^{2}-64\right)\left(x-2\right)+\left(x-2\right)\times 8.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}=8x^{3}-25x+16x^{2}-50
Whakakotahitia ngā kupu rite i 8x^{4}-16x^{3}-32x^{2}+64x+16x^{3}-32x^{2}-64x+128+8x-16.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}-8x^{3}=-25x+16x^{2}-50
Tangohia te 8x^{3} mai i ngā taha e rua.
\frac{8x^{4}-64x^{2}+8x+112}{x-2}+\frac{-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -8x^{3} ki te \frac{x-2}{x-2}.
\frac{8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right)}{x-2}=-25x+16x^{2}-50
Tā te mea he rite te tauraro o \frac{8x^{4}-64x^{2}+8x+112}{x-2} me \frac{-8x^{3}\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}}{x-2}=-25x+16x^{2}-50
Mahia ngā whakarea i roto o 8x^{4}-64x^{2}+8x+112-8x^{3}\left(x-2\right).
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}=-25x+16x^{2}-50
Whakakotahitia ngā kupu rite i 8x^{4}-64x^{2}+8x+112-8x^{4}+16x^{3}.
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+25x=16x^{2}-50
Me tāpiri te 25x ki ngā taha e rua.
\frac{-64x^{2}+8x+112+16x^{3}}{x-2}+\frac{25x\left(x-2\right)}{x-2}=16x^{2}-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 25x ki te \frac{x-2}{x-2}.
\frac{-64x^{2}+8x+112+16x^{3}+25x\left(x-2\right)}{x-2}=16x^{2}-50
Tā te mea he rite te tauraro o \frac{-64x^{2}+8x+112+16x^{3}}{x-2} me \frac{25x\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-64x^{2}+8x+112+16x^{3}+25x^{2}-50x}{x-2}=16x^{2}-50
Mahia ngā whakarea i roto o -64x^{2}+8x+112+16x^{3}+25x\left(x-2\right).
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}=16x^{2}-50
Whakakotahitia ngā kupu rite i -64x^{2}+8x+112+16x^{3}+25x^{2}-50x.
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}-16x^{2}=-50
Tangohia te 16x^{2} mai i ngā taha e rua.
\frac{-39x^{2}-42x+112+16x^{3}}{x-2}+\frac{-16x^{2}\left(x-2\right)}{x-2}=-50
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -16x^{2} ki te \frac{x-2}{x-2}.
\frac{-39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right)}{x-2}=-50
Tā te mea he rite te tauraro o \frac{-39x^{2}-42x+112+16x^{3}}{x-2} me \frac{-16x^{2}\left(x-2\right)}{x-2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}}{x-2}=-50
Mahia ngā whakarea i roto o -39x^{2}-42x+112+16x^{3}-16x^{2}\left(x-2\right).
\frac{-7x^{2}-42x+112}{x-2}=-50
Whakakotahitia ngā kupu rite i -39x^{2}-42x+112+16x^{3}-16x^{3}+32x^{2}.
-7x^{2}-42x+112=-50\left(x-2\right)
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
-7x^{2}-42x+112=-50x+100
Whakamahia te āhuatanga tohatoha hei whakarea te -50 ki te x-2.
-7x^{2}-42x+112+50x=100
Me tāpiri te 50x ki ngā taha e rua.
-7x^{2}+8x+112=100
Pahekotia te -42x me 50x, ka 8x.
-7x^{2}+8x=100-112
Tangohia te 112 mai i ngā taha e rua.
-7x^{2}+8x=-12
Tangohia te 112 i te 100, ka -12.
\frac{-7x^{2}+8x}{-7}=-\frac{12}{-7}
Whakawehea ngā taha e rua ki te -7.
x^{2}+\frac{8}{-7}x=-\frac{12}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
x^{2}-\frac{8}{7}x=-\frac{12}{-7}
Whakawehe 8 ki te -7.
x^{2}-\frac{8}{7}x=\frac{12}{7}
Whakawehe -12 ki te -7.
x^{2}-\frac{8}{7}x+\left(-\frac{4}{7}\right)^{2}=\frac{12}{7}+\left(-\frac{4}{7}\right)^{2}
Whakawehea te -\frac{8}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{4}{7}. Nā, tāpiria te pūrua o te -\frac{4}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{8}{7}x+\frac{16}{49}=\frac{12}{7}+\frac{16}{49}
Pūruatia -\frac{4}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{8}{7}x+\frac{16}{49}=\frac{100}{49}
Tāpiri \frac{12}{7} ki te \frac{16}{49} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{4}{7}\right)^{2}=\frac{100}{49}
Tauwehea x^{2}-\frac{8}{7}x+\frac{16}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{7}\right)^{2}}=\sqrt{\frac{100}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{4}{7}=\frac{10}{7} x-\frac{4}{7}=-\frac{10}{7}
Whakarūnātia.
x=2 x=-\frac{6}{7}
Me tāpiri \frac{4}{7} ki ngā taha e rua o te whārite.
x=-\frac{6}{7}
Tē taea kia ōrite te tāupe x ki 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}