Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=26 ab=8\times 15=120
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 8v^{2}+av+bv+15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,120 2,60 3,40 4,30 5,24 6,20 8,15 10,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 120.
1+120=121 2+60=62 3+40=43 4+30=34 5+24=29 6+20=26 8+15=23 10+12=22
Tātaihia te tapeke mō ia takirua.
a=6 b=20
Ko te otinga te takirua ka hoatu i te tapeke 26.
\left(8v^{2}+6v\right)+\left(20v+15\right)
Tuhia anō te 8v^{2}+26v+15 hei \left(8v^{2}+6v\right)+\left(20v+15\right).
2v\left(4v+3\right)+5\left(4v+3\right)
Tauwehea te 2v i te tuatahi me te 5 i te rōpū tuarua.
\left(4v+3\right)\left(2v+5\right)
Whakatauwehea atu te kīanga pātahi 4v+3 mā te whakamahi i te āhuatanga tātai tohatoha.
8v^{2}+26v+15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
v=\frac{-26±\sqrt{26^{2}-4\times 8\times 15}}{2\times 8}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
v=\frac{-26±\sqrt{676-4\times 8\times 15}}{2\times 8}
Pūrua 26.
v=\frac{-26±\sqrt{676-32\times 15}}{2\times 8}
Whakareatia -4 ki te 8.
v=\frac{-26±\sqrt{676-480}}{2\times 8}
Whakareatia -32 ki te 15.
v=\frac{-26±\sqrt{196}}{2\times 8}
Tāpiri 676 ki te -480.
v=\frac{-26±14}{2\times 8}
Tuhia te pūtakerua o te 196.
v=\frac{-26±14}{16}
Whakareatia 2 ki te 8.
v=-\frac{12}{16}
Nā, me whakaoti te whārite v=\frac{-26±14}{16} ina he tāpiri te ±. Tāpiri -26 ki te 14.
v=-\frac{3}{4}
Whakahekea te hautanga \frac{-12}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
v=-\frac{40}{16}
Nā, me whakaoti te whārite v=\frac{-26±14}{16} ina he tango te ±. Tango 14 mai i -26.
v=-\frac{5}{2}
Whakahekea te hautanga \frac{-40}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
8v^{2}+26v+15=8\left(v-\left(-\frac{3}{4}\right)\right)\left(v-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{3}{4} mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
8v^{2}+26v+15=8\left(v+\frac{3}{4}\right)\left(v+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
8v^{2}+26v+15=8\times \frac{4v+3}{4}\left(v+\frac{5}{2}\right)
Tāpiri \frac{3}{4} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8v^{2}+26v+15=8\times \frac{4v+3}{4}\times \frac{2v+5}{2}
Tāpiri \frac{5}{2} ki te v mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8v^{2}+26v+15=8\times \frac{\left(4v+3\right)\left(2v+5\right)}{4\times 2}
Whakareatia \frac{4v+3}{4} ki te \frac{2v+5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
8v^{2}+26v+15=8\times \frac{\left(4v+3\right)\left(2v+5\right)}{8}
Whakareatia 4 ki te 2.
8v^{2}+26v+15=\left(4v+3\right)\left(2v+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 8 i roto i te 8 me te 8.