Whakaoti mō q
q=1+\frac{1}{2}i=1+0.5i
q=1-\frac{1}{2}i=1-0.5i
Tohaina
Kua tāruatia ki te papatopenga
8q^{2}-16q+10=0
Whakamahia te āhuatanga tohatoha hei whakarea te 8q ki te q-2.
q=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 8\times 10}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -16 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-16\right)±\sqrt{256-4\times 8\times 10}}{2\times 8}
Pūrua -16.
q=\frac{-\left(-16\right)±\sqrt{256-32\times 10}}{2\times 8}
Whakareatia -4 ki te 8.
q=\frac{-\left(-16\right)±\sqrt{256-320}}{2\times 8}
Whakareatia -32 ki te 10.
q=\frac{-\left(-16\right)±\sqrt{-64}}{2\times 8}
Tāpiri 256 ki te -320.
q=\frac{-\left(-16\right)±8i}{2\times 8}
Tuhia te pūtakerua o te -64.
q=\frac{16±8i}{2\times 8}
Ko te tauaro o -16 ko 16.
q=\frac{16±8i}{16}
Whakareatia 2 ki te 8.
q=\frac{16+8i}{16}
Nā, me whakaoti te whārite q=\frac{16±8i}{16} ina he tāpiri te ±. Tāpiri 16 ki te 8i.
q=1+\frac{1}{2}i
Whakawehe 16+8i ki te 16.
q=\frac{16-8i}{16}
Nā, me whakaoti te whārite q=\frac{16±8i}{16} ina he tango te ±. Tango 8i mai i 16.
q=1-\frac{1}{2}i
Whakawehe 16-8i ki te 16.
q=1+\frac{1}{2}i q=1-\frac{1}{2}i
Kua oti te whārite te whakatau.
8q^{2}-16q+10=0
Whakamahia te āhuatanga tohatoha hei whakarea te 8q ki te q-2.
8q^{2}-16q=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{8q^{2}-16q}{8}=-\frac{10}{8}
Whakawehea ngā taha e rua ki te 8.
q^{2}+\left(-\frac{16}{8}\right)q=-\frac{10}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
q^{2}-2q=-\frac{10}{8}
Whakawehe -16 ki te 8.
q^{2}-2q=-\frac{5}{4}
Whakahekea te hautanga \frac{-10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
q^{2}-2q+1=-\frac{5}{4}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}-2q+1=-\frac{1}{4}
Tāpiri -\frac{5}{4} ki te 1.
\left(q-1\right)^{2}=-\frac{1}{4}
Tauwehea q^{2}-2q+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-1\right)^{2}}=\sqrt{-\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q-1=\frac{1}{2}i q-1=-\frac{1}{2}i
Whakarūnātia.
q=1+\frac{1}{2}i q=1-\frac{1}{2}i
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}