Tīpoka ki ngā ihirangi matua
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8t^{2}-9t+1=0
Whakakapia te t mō te q^{3}.
t=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 8\times 1}}{2\times 8}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 8 mō te a, te -9 mō te b, me te 1 mō te c i te ture pūrua.
t=\frac{9±7}{16}
Mahia ngā tātaitai.
t=1 t=\frac{1}{8}
Whakaotia te whārite t=\frac{9±7}{16} ina he tōrunga te ±, ina he tōraro te ±.
q=1 q=\frac{1}{2}
I te mea ko q=t^{3}, ka riro ngā otinga mā te arotake i te q=\sqrt[3]{t} mō ia t.