Whakaoti mō q
q=1
q=0
Tohaina
Kua tāruatia ki te papatopenga
q\left(8q-8\right)=0
Tauwehea te q.
q=0 q=1
Hei kimi otinga whārite, me whakaoti te q=0 me te 8q-8=0.
8q^{2}-8q=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -8 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-8\right)±8}{2\times 8}
Tuhia te pūtakerua o te \left(-8\right)^{2}.
q=\frac{8±8}{2\times 8}
Ko te tauaro o -8 ko 8.
q=\frac{8±8}{16}
Whakareatia 2 ki te 8.
q=\frac{16}{16}
Nā, me whakaoti te whārite q=\frac{8±8}{16} ina he tāpiri te ±. Tāpiri 8 ki te 8.
q=1
Whakawehe 16 ki te 16.
q=\frac{0}{16}
Nā, me whakaoti te whārite q=\frac{8±8}{16} ina he tango te ±. Tango 8 mai i 8.
q=0
Whakawehe 0 ki te 16.
q=1 q=0
Kua oti te whārite te whakatau.
8q^{2}-8q=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{8q^{2}-8q}{8}=\frac{0}{8}
Whakawehea ngā taha e rua ki te 8.
q^{2}+\left(-\frac{8}{8}\right)q=\frac{0}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
q^{2}-q=\frac{0}{8}
Whakawehe -8 ki te 8.
q^{2}-q=0
Whakawehe 0 ki te 8.
q^{2}-q+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}-q+\frac{1}{4}=\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(q-\frac{1}{2}\right)^{2}=\frac{1}{4}
Tauwehea q^{2}-q+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q-\frac{1}{2}=\frac{1}{2} q-\frac{1}{2}=-\frac{1}{2}
Whakarūnātia.
q=1 q=0
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}