Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki a
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(a^{1}+8\right)\frac{\mathrm{d}}{\mathrm{d}a}(8a^{1})-8a^{1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{1}+8)}{\left(a^{1}+8\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(a^{1}+8\right)\times 8a^{1-1}-8a^{1}a^{1-1}}{\left(a^{1}+8\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(a^{1}+8\right)\times 8a^{0}-8a^{1}a^{0}}{\left(a^{1}+8\right)^{2}}
Mahia ngā tātaitanga.
\frac{a^{1}\times 8a^{0}+8\times 8a^{0}-8a^{1}a^{0}}{\left(a^{1}+8\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{8a^{1}+8\times 8a^{0}-8a^{1}}{\left(a^{1}+8\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{8a^{1}+64a^{0}-8a^{1}}{\left(a^{1}+8\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(8-8\right)a^{1}+64a^{0}}{\left(a^{1}+8\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{64a^{0}}{\left(a^{1}+8\right)^{2}}
Tango 8 mai i 8.
\frac{64a^{0}}{\left(a+8\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{64\times 1}{\left(a+8\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{64}{\left(a+8\right)^{2}}
Mō tētahi kupu t, t\times 1=t me 1t=t.