Whakaoti mō I
I = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
Tohaina
Kua tāruatia ki te papatopenga
8I+40I-224=0
Whakamahia te āhuatanga tohatoha hei whakarea te 40 ki te I-5.6.
48I-224=0
Pahekotia te 8I me 40I, ka 48I.
48I=224
Me tāpiri te 224 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
I=\frac{224}{48}
Whakawehea ngā taha e rua ki te 48.
I=\frac{14}{3}
Whakahekea te hautanga \frac{224}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}