Whakaoti mō t
t=0
Tohaina
Kua tāruatia ki te papatopenga
\left(8-t\right)^{2}=\left(\sqrt{5t^{2}+64-16t}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
64-16t+t^{2}=\left(\sqrt{5t^{2}+64-16t}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(8-t\right)^{2}.
64-16t+t^{2}=5t^{2}+64-16t
Tātaihia te \sqrt{5t^{2}+64-16t} mā te pū o 2, kia riro ko 5t^{2}+64-16t.
64-16t+t^{2}-5t^{2}=64-16t
Tangohia te 5t^{2} mai i ngā taha e rua.
64-16t-4t^{2}=64-16t
Pahekotia te t^{2} me -5t^{2}, ka -4t^{2}.
64-16t-4t^{2}+16t=64
Me tāpiri te 16t ki ngā taha e rua.
64-4t^{2}=64
Pahekotia te -16t me 16t, ka 0.
-4t^{2}=64-64
Tangohia te 64 mai i ngā taha e rua.
-4t^{2}=0
Tangohia te 64 i te 64, ka 0.
t^{2}=0
Whakawehea ngā taha e rua ki te -4. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
t=0 t=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
8-0=\sqrt{5\times 0^{2}+64-16\times 0}
Whakakapia te 0 mō te t i te whārite 8-t=\sqrt{5t^{2}+64-16t}.
8=8
Whakarūnātia. Ko te uara t=0 kua ngata te whārite.
t=0
Ko te whārite 8-t=\sqrt{5t^{2}-16t+64} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}