Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(8-t\right)^{2}=\left(\sqrt{5t^{2}+64-16t}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
64-16t+t^{2}=\left(\sqrt{5t^{2}+64-16t}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(8-t\right)^{2}.
64-16t+t^{2}=5t^{2}+64-16t
Tātaihia te \sqrt{5t^{2}+64-16t} mā te pū o 2, kia riro ko 5t^{2}+64-16t.
64-16t+t^{2}-5t^{2}=64-16t
Tangohia te 5t^{2} mai i ngā taha e rua.
64-16t-4t^{2}=64-16t
Pahekotia te t^{2} me -5t^{2}, ka -4t^{2}.
64-16t-4t^{2}+16t=64
Me tāpiri te 16t ki ngā taha e rua.
64-4t^{2}=64
Pahekotia te -16t me 16t, ka 0.
-4t^{2}=64-64
Tangohia te 64 mai i ngā taha e rua.
-4t^{2}=0
Tangohia te 64 i te 64, ka 0.
t^{2}=0
Whakawehea ngā taha e rua ki te -4. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
t=0 t=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
8-0=\sqrt{5\times 0^{2}+64-16\times 0}
Whakakapia te 0 mō te t i te whārite 8-t=\sqrt{5t^{2}+64-16t}.
8=8
Whakarūnātia. Ko te uara t=0 kua ngata te whārite.
t=0
Ko te whārite 8-t=\sqrt{5t^{2}-16t+64} he rongoā ahurei.