Manatoko
teka
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
8 - 5 \times \frac { 2 } { 3 } - 07 = \frac { 11 } { 20 }
Tohaina
Kua tāruatia ki te papatopenga
8-\frac{5\times 2}{3}-0\times 7=\frac{11}{20}
Tuhia te 5\times \frac{2}{3} hei hautanga kotahi.
8-\frac{10}{3}-0\times 7=\frac{11}{20}
Whakareatia te 5 ki te 2, ka 10.
\frac{24}{3}-\frac{10}{3}-0\times 7=\frac{11}{20}
Me tahuri te 8 ki te hautau \frac{24}{3}.
\frac{24-10}{3}-0\times 7=\frac{11}{20}
Tā te mea he rite te tauraro o \frac{24}{3} me \frac{10}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{14}{3}-0\times 7=\frac{11}{20}
Tangohia te 10 i te 24, ka 14.
\frac{14}{3}-0=\frac{11}{20}
Whakareatia te 0 ki te 7, ka 0.
\frac{14}{3}=\frac{11}{20}
Tangohia te 0 i te \frac{14}{3}, ka \frac{14}{3}.
\frac{280}{60}=\frac{33}{60}
Ko te maha noa iti rawa atu o 3 me 20 ko 60. Me tahuri \frac{14}{3} me \frac{11}{20} ki te hautau me te tautūnga 60.
\text{false}
Whakatauritea te \frac{280}{60} me te \frac{33}{60}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}