Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

11y^{2}-26y+8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-26 ab=11\times 8=88
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 11y^{2}+ay+by+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-88 -2,-44 -4,-22 -8,-11
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 88.
-1-88=-89 -2-44=-46 -4-22=-26 -8-11=-19
Tātaihia te tapeke mō ia takirua.
a=-22 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -26.
\left(11y^{2}-22y\right)+\left(-4y+8\right)
Tuhia anō te 11y^{2}-26y+8 hei \left(11y^{2}-22y\right)+\left(-4y+8\right).
11y\left(y-2\right)-4\left(y-2\right)
Tauwehea te 11y i te tuatahi me te -4 i te rōpū tuarua.
\left(y-2\right)\left(11y-4\right)
Whakatauwehea atu te kīanga pātahi y-2 mā te whakamahi i te āhuatanga tātai tohatoha.
y=2 y=\frac{4}{11}
Hei kimi otinga whārite, me whakaoti te y-2=0 me te 11y-4=0.
11y^{2}-26y+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 11\times 8}}{2\times 11}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 11 mō a, -26 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-26\right)±\sqrt{676-4\times 11\times 8}}{2\times 11}
Pūrua -26.
y=\frac{-\left(-26\right)±\sqrt{676-44\times 8}}{2\times 11}
Whakareatia -4 ki te 11.
y=\frac{-\left(-26\right)±\sqrt{676-352}}{2\times 11}
Whakareatia -44 ki te 8.
y=\frac{-\left(-26\right)±\sqrt{324}}{2\times 11}
Tāpiri 676 ki te -352.
y=\frac{-\left(-26\right)±18}{2\times 11}
Tuhia te pūtakerua o te 324.
y=\frac{26±18}{2\times 11}
Ko te tauaro o -26 ko 26.
y=\frac{26±18}{22}
Whakareatia 2 ki te 11.
y=\frac{44}{22}
Nā, me whakaoti te whārite y=\frac{26±18}{22} ina he tāpiri te ±. Tāpiri 26 ki te 18.
y=2
Whakawehe 44 ki te 22.
y=\frac{8}{22}
Nā, me whakaoti te whārite y=\frac{26±18}{22} ina he tango te ±. Tango 18 mai i 26.
y=\frac{4}{11}
Whakahekea te hautanga \frac{8}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
y=2 y=\frac{4}{11}
Kua oti te whārite te whakatau.
11y^{2}-26y+8=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
11y^{2}-26y+8-8=-8
Me tango 8 mai i ngā taha e rua o te whārite.
11y^{2}-26y=-8
Mā te tango i te 8 i a ia ake anō ka toe ko te 0.
\frac{11y^{2}-26y}{11}=-\frac{8}{11}
Whakawehea ngā taha e rua ki te 11.
y^{2}-\frac{26}{11}y=-\frac{8}{11}
Mā te whakawehe ki te 11 ka wetekia te whakareanga ki te 11.
y^{2}-\frac{26}{11}y+\left(-\frac{13}{11}\right)^{2}=-\frac{8}{11}+\left(-\frac{13}{11}\right)^{2}
Whakawehea te -\frac{26}{11}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{11}. Nā, tāpiria te pūrua o te -\frac{13}{11} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{26}{11}y+\frac{169}{121}=-\frac{8}{11}+\frac{169}{121}
Pūruatia -\frac{13}{11} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{26}{11}y+\frac{169}{121}=\frac{81}{121}
Tāpiri -\frac{8}{11} ki te \frac{169}{121} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{13}{11}\right)^{2}=\frac{81}{121}
Tauwehea y^{2}-\frac{26}{11}y+\frac{169}{121}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{13}{11}\right)^{2}}=\sqrt{\frac{81}{121}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{13}{11}=\frac{9}{11} y-\frac{13}{11}=-\frac{9}{11}
Whakarūnātia.
y=2 y=\frac{4}{11}
Me tāpiri \frac{13}{11} ki ngā taha e rua o te whārite.