Aromātai
-\frac{1}{16}=-0.0625
Tauwehe
-\frac{1}{16} = -0.0625
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
8 - ( - 4 ) ^ { - 2 } - 2 ^ { 3 } \div ( 314 - \pi ) ^ { 0 }
Tohaina
Kua tāruatia ki te papatopenga
8-\frac{1}{16}-\frac{2^{3}}{\left(314-\pi \right)^{0}}
Tātaihia te -4 mā te pū o -2, kia riro ko \frac{1}{16}.
\frac{127}{16}-\frac{2^{3}}{\left(314-\pi \right)^{0}}
Tangohia te \frac{1}{16} i te 8, ka \frac{127}{16}.
\frac{127}{16}-\frac{8}{\left(314-\pi \right)^{0}}
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
\frac{127}{16}-\frac{8\times 16}{16}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 16 me \left(314-\pi \right)^{0} ko 16. Whakareatia \frac{8}{\left(314-\pi \right)^{0}} ki te \frac{16}{16}.
\frac{127-8\times 16}{16}
Tā te mea he rite te tauraro o \frac{127}{16} me \frac{8\times 16}{16}, me tango rāua mā te tango i ō raua taurunga.
\frac{127-128}{16}
Mahia ngā whakarea i roto o 127-8\times 16.
\frac{-1}{16}
Mahia ngā tātaitai i roto o 127-128.
-\frac{1}{16}
Ka taea te hautanga \frac{-1}{16} te tuhi anō ko -\frac{1}{16} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}