Whakaoti mō y
y=\frac{i\sqrt{57}}{6}+1\approx 1+1.258305739i
y=-\frac{i\sqrt{57}}{6}+1\approx 1-1.258305739i
Tohaina
Kua tāruatia ki te papatopenga
24\left(-0.5y+1\right)y=31
Whakareatia te 8 ki te 3, ka 24.
\left(-12y+24\right)y=31
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te -0.5y+1.
-12y^{2}+24y=31
Whakamahia te āhuatanga tohatoha hei whakarea te -12y+24 ki te y.
-12y^{2}+24y-31=0
Tangohia te 31 mai i ngā taha e rua.
y=\frac{-24±\sqrt{24^{2}-4\left(-12\right)\left(-31\right)}}{2\left(-12\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -12 mō a, 24 mō b, me -31 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\left(-12\right)\left(-31\right)}}{2\left(-12\right)}
Pūrua 24.
y=\frac{-24±\sqrt{576+48\left(-31\right)}}{2\left(-12\right)}
Whakareatia -4 ki te -12.
y=\frac{-24±\sqrt{576-1488}}{2\left(-12\right)}
Whakareatia 48 ki te -31.
y=\frac{-24±\sqrt{-912}}{2\left(-12\right)}
Tāpiri 576 ki te -1488.
y=\frac{-24±4\sqrt{57}i}{2\left(-12\right)}
Tuhia te pūtakerua o te -912.
y=\frac{-24±4\sqrt{57}i}{-24}
Whakareatia 2 ki te -12.
y=\frac{-24+4\sqrt{57}i}{-24}
Nā, me whakaoti te whārite y=\frac{-24±4\sqrt{57}i}{-24} ina he tāpiri te ±. Tāpiri -24 ki te 4i\sqrt{57}.
y=-\frac{\sqrt{57}i}{6}+1
Whakawehe -24+4i\sqrt{57} ki te -24.
y=\frac{-4\sqrt{57}i-24}{-24}
Nā, me whakaoti te whārite y=\frac{-24±4\sqrt{57}i}{-24} ina he tango te ±. Tango 4i\sqrt{57} mai i -24.
y=\frac{\sqrt{57}i}{6}+1
Whakawehe -24-4i\sqrt{57} ki te -24.
y=-\frac{\sqrt{57}i}{6}+1 y=\frac{\sqrt{57}i}{6}+1
Kua oti te whārite te whakatau.
24\left(-0.5y+1\right)y=31
Whakareatia te 8 ki te 3, ka 24.
\left(-12y+24\right)y=31
Whakamahia te āhuatanga tohatoha hei whakarea te 24 ki te -0.5y+1.
-12y^{2}+24y=31
Whakamahia te āhuatanga tohatoha hei whakarea te -12y+24 ki te y.
\frac{-12y^{2}+24y}{-12}=\frac{31}{-12}
Whakawehea ngā taha e rua ki te -12.
y^{2}+\frac{24}{-12}y=\frac{31}{-12}
Mā te whakawehe ki te -12 ka wetekia te whakareanga ki te -12.
y^{2}-2y=\frac{31}{-12}
Whakawehe 24 ki te -12.
y^{2}-2y=-\frac{31}{12}
Whakawehe 31 ki te -12.
y^{2}-2y+1=-\frac{31}{12}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-2y+1=-\frac{19}{12}
Tāpiri -\frac{31}{12} ki te 1.
\left(y-1\right)^{2}=-\frac{19}{12}
Tauwehea y^{2}-2y+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-1\right)^{2}}=\sqrt{-\frac{19}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-1=\frac{\sqrt{57}i}{6} y-1=-\frac{\sqrt{57}i}{6}
Whakarūnātia.
y=\frac{\sqrt{57}i}{6}+1 y=-\frac{\sqrt{57}i}{6}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}