Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
8\times 6-4+3\times \frac{18}{3}=7\times \frac{18}{3}+\frac{18}{3}+14
Whakawehea te 18 ki te 3, kia riro ko 6.
48-4+3\times \frac{18}{3}=7\times \frac{18}{3}+\frac{18}{3}+14
Whakareatia te 8 ki te 6, ka 48.
44+3\times \frac{18}{3}=7\times \frac{18}{3}+\frac{18}{3}+14
Tangohia te 4 i te 48, ka 44.
44+3\times 6=7\times \frac{18}{3}+\frac{18}{3}+14
Whakawehea te 18 ki te 3, kia riro ko 6.
44+18=7\times \frac{18}{3}+\frac{18}{3}+14
Whakareatia te 3 ki te 6, ka 18.
62=7\times \frac{18}{3}+\frac{18}{3}+14
Tāpirihia te 44 ki te 18, ka 62.
62=7\times 6+\frac{18}{3}+14
Whakawehea te 18 ki te 3, kia riro ko 6.
62=42+\frac{18}{3}+14
Whakareatia te 7 ki te 6, ka 42.
62=42+6+14
Whakawehea te 18 ki te 3, kia riro ko 6.
62=48+14
Tāpirihia te 42 ki te 6, ka 48.
62=62
Tāpirihia te 48 ki te 14, ka 62.
\text{true}
Whakatauritea te 62 me te 62.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}