Whakaoti mō x (complex solution)
x=\frac{7+\sqrt{15}i}{16}\approx 0.4375+0.242061459i
x=\frac{-\sqrt{15}i+7}{16}\approx 0.4375-0.242061459i
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x^{2}-7x+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 8\times 2}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -7 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 8\times 2}}{2\times 8}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-32\times 2}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-7\right)±\sqrt{49-64}}{2\times 8}
Whakareatia -32 ki te 2.
x=\frac{-\left(-7\right)±\sqrt{-15}}{2\times 8}
Tāpiri 49 ki te -64.
x=\frac{-\left(-7\right)±\sqrt{15}i}{2\times 8}
Tuhia te pūtakerua o te -15.
x=\frac{7±\sqrt{15}i}{2\times 8}
Ko te tauaro o -7 ko 7.
x=\frac{7±\sqrt{15}i}{16}
Whakareatia 2 ki te 8.
x=\frac{7+\sqrt{15}i}{16}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{15}i}{16} ina he tāpiri te ±. Tāpiri 7 ki te i\sqrt{15}.
x=\frac{-\sqrt{15}i+7}{16}
Nā, me whakaoti te whārite x=\frac{7±\sqrt{15}i}{16} ina he tango te ±. Tango i\sqrt{15} mai i 7.
x=\frac{7+\sqrt{15}i}{16} x=\frac{-\sqrt{15}i+7}{16}
Kua oti te whārite te whakatau.
8x^{2}-7x+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
8x^{2}-7x+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
8x^{2}-7x=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{8x^{2}-7x}{8}=-\frac{2}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}-\frac{7}{8}x=-\frac{2}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}-\frac{7}{8}x=-\frac{1}{4}
Whakahekea te hautanga \frac{-2}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{7}{8}x+\left(-\frac{7}{16}\right)^{2}=-\frac{1}{4}+\left(-\frac{7}{16}\right)^{2}
Whakawehea te -\frac{7}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{16}. Nā, tāpiria te pūrua o te -\frac{7}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{8}x+\frac{49}{256}=-\frac{1}{4}+\frac{49}{256}
Pūruatia -\frac{7}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{8}x+\frac{49}{256}=-\frac{15}{256}
Tāpiri -\frac{1}{4} ki te \frac{49}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{16}\right)^{2}=-\frac{15}{256}
Tauwehea x^{2}-\frac{7}{8}x+\frac{49}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{16}\right)^{2}}=\sqrt{-\frac{15}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{16}=\frac{\sqrt{15}i}{16} x-\frac{7}{16}=-\frac{\sqrt{15}i}{16}
Whakarūnātia.
x=\frac{7+\sqrt{15}i}{16} x=\frac{-\sqrt{15}i+7}{16}
Me tāpiri \frac{7}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}