Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x^{2}+3-4x-9x
Pahekotia te 8x^{2} me -5x^{2}, ka 3x^{2}.
3x^{2}+3-13x
Pahekotia te -4x me -9x, ka -13x.
factor(3x^{2}+3-4x-9x)
Pahekotia te 8x^{2} me -5x^{2}, ka 3x^{2}.
factor(3x^{2}+3-13x)
Pahekotia te -4x me -9x, ka -13x.
3x^{2}-13x+3=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 3\times 3}}{2\times 3}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 3\times 3}}{2\times 3}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-12\times 3}}{2\times 3}
Whakareatia -4 ki te 3.
x=\frac{-\left(-13\right)±\sqrt{169-36}}{2\times 3}
Whakareatia -12 ki te 3.
x=\frac{-\left(-13\right)±\sqrt{133}}{2\times 3}
Tāpiri 169 ki te -36.
x=\frac{13±\sqrt{133}}{2\times 3}
Ko te tauaro o -13 ko 13.
x=\frac{13±\sqrt{133}}{6}
Whakareatia 2 ki te 3.
x=\frac{\sqrt{133}+13}{6}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{133}}{6} ina he tāpiri te ±. Tāpiri 13 ki te \sqrt{133}.
x=\frac{13-\sqrt{133}}{6}
Nā, me whakaoti te whārite x=\frac{13±\sqrt{133}}{6} ina he tango te ±. Tango \sqrt{133} mai i 13.
3x^{2}-13x+3=3\left(x-\frac{\sqrt{133}+13}{6}\right)\left(x-\frac{13-\sqrt{133}}{6}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{13+\sqrt{133}}{6} mō te x_{1} me te \frac{13-\sqrt{133}}{6} mō te x_{2}.