Aromātai
-\frac{2518}{21}\approx -119.904761905
Tauwehe
-\frac{2518}{21} = -119\frac{19}{21} = -119.9047619047619
Tohaina
Kua tāruatia ki te papatopenga
\frac{1144}{7}-20\times \frac{85}{6}
Whakareatia te 8 ki te 143, ka 1144.
\frac{1144}{7}-\frac{20\times 85}{6}
Tuhia te 20\times \frac{85}{6} hei hautanga kotahi.
\frac{1144}{7}-\frac{1700}{6}
Whakareatia te 20 ki te 85, ka 1700.
\frac{1144}{7}-\frac{850}{3}
Whakahekea te hautanga \frac{1700}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{3432}{21}-\frac{5950}{21}
Ko te maha noa iti rawa atu o 7 me 3 ko 21. Me tahuri \frac{1144}{7} me \frac{850}{3} ki te hautau me te tautūnga 21.
\frac{3432-5950}{21}
Tā te mea he rite te tauraro o \frac{3432}{21} me \frac{5950}{21}, me tango rāua mā te tango i ō raua taurunga.
-\frac{2518}{21}
Tangohia te 5950 i te 3432, ka -2518.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}