Aromātai
2
Tauwehe
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{16+1}{2}-\frac{1}{4}-5-5\times 0.25
Whakareatia te 8 ki te 2, ka 16.
\frac{17}{2}-\frac{1}{4}-5-5\times 0.25
Tāpirihia te 16 ki te 1, ka 17.
\frac{34}{4}-\frac{1}{4}-5-5\times 0.25
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{17}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\frac{34-1}{4}-5-5\times 0.25
Tā te mea he rite te tauraro o \frac{34}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{33}{4}-5-5\times 0.25
Tangohia te 1 i te 34, ka 33.
\frac{33}{4}-\frac{20}{4}-5\times 0.25
Me tahuri te 5 ki te hautau \frac{20}{4}.
\frac{33-20}{4}-5\times 0.25
Tā te mea he rite te tauraro o \frac{33}{4} me \frac{20}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{4}-5\times 0.25
Tangohia te 20 i te 33, ka 13.
\frac{13}{4}-1.25
Whakareatia te 5 ki te 0.25, ka 1.25.
\frac{13}{4}-\frac{5}{4}
Me tahuri ki tau ā-ira 1.25 ki te hautau \frac{125}{100}. Whakahekea te hautanga \frac{125}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{13-5}{4}
Tā te mea he rite te tauraro o \frac{13}{4} me \frac{5}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{8}{4}
Tangohia te 5 i te 13, ka 8.
2
Whakawehea te 8 ki te 4, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}