Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8=20-c^{2}
Tāpirihia te 4 ki te 16, ka 20.
20-c^{2}=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-c^{2}=8-20
Tangohia te 20 mai i ngā taha e rua.
-c^{2}=-12
Tangohia te 20 i te 8, ka -12.
c^{2}=\frac{-12}{-1}
Whakawehea ngā taha e rua ki te -1.
c^{2}=12
Ka taea te hautanga \frac{-12}{-1} te whakamāmā ki te 12 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
c=2\sqrt{3} c=-2\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
8=20-c^{2}
Tāpirihia te 4 ki te 16, ka 20.
20-c^{2}=8
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
20-c^{2}-8=0
Tangohia te 8 mai i ngā taha e rua.
12-c^{2}=0
Tangohia te 8 i te 20, ka 12.
-c^{2}+12=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-1\right)\times 12}}{2\left(-1\right)}
Pūrua 0.
c=\frac{0±\sqrt{4\times 12}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
c=\frac{0±\sqrt{48}}{2\left(-1\right)}
Whakareatia 4 ki te 12.
c=\frac{0±4\sqrt{3}}{2\left(-1\right)}
Tuhia te pūtakerua o te 48.
c=\frac{0±4\sqrt{3}}{-2}
Whakareatia 2 ki te -1.
c=-2\sqrt{3}
Nā, me whakaoti te whārite c=\frac{0±4\sqrt{3}}{-2} ina he tāpiri te ±.
c=2\sqrt{3}
Nā, me whakaoti te whārite c=\frac{0±4\sqrt{3}}{-2} ina he tango te ±.
c=-2\sqrt{3} c=2\sqrt{3}
Kua oti te whārite te whakatau.