Tīpoka ki ngā ihirangi matua
Whakaoti mō g
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3g^{2}-9g+8=188
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
3g^{2}-9g+8-188=188-188
Me tango 188 mai i ngā taha e rua o te whārite.
3g^{2}-9g+8-188=0
Mā te tango i te 188 i a ia ake anō ka toe ko te 0.
3g^{2}-9g-180=0
Tango 188 mai i 8.
g=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-180\right)}}{2\times 3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3 mō a, -9 mō b, me -180 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-180\right)}}{2\times 3}
Pūrua -9.
g=\frac{-\left(-9\right)±\sqrt{81-12\left(-180\right)}}{2\times 3}
Whakareatia -4 ki te 3.
g=\frac{-\left(-9\right)±\sqrt{81+2160}}{2\times 3}
Whakareatia -12 ki te -180.
g=\frac{-\left(-9\right)±\sqrt{2241}}{2\times 3}
Tāpiri 81 ki te 2160.
g=\frac{-\left(-9\right)±3\sqrt{249}}{2\times 3}
Tuhia te pūtakerua o te 2241.
g=\frac{9±3\sqrt{249}}{2\times 3}
Ko te tauaro o -9 ko 9.
g=\frac{9±3\sqrt{249}}{6}
Whakareatia 2 ki te 3.
g=\frac{3\sqrt{249}+9}{6}
Nā, me whakaoti te whārite g=\frac{9±3\sqrt{249}}{6} ina he tāpiri te ±. Tāpiri 9 ki te 3\sqrt{249}.
g=\frac{\sqrt{249}+3}{2}
Whakawehe 9+3\sqrt{249} ki te 6.
g=\frac{9-3\sqrt{249}}{6}
Nā, me whakaoti te whārite g=\frac{9±3\sqrt{249}}{6} ina he tango te ±. Tango 3\sqrt{249} mai i 9.
g=\frac{3-\sqrt{249}}{2}
Whakawehe 9-3\sqrt{249} ki te 6.
g=\frac{\sqrt{249}+3}{2} g=\frac{3-\sqrt{249}}{2}
Kua oti te whārite te whakatau.
3g^{2}-9g+8=188
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
3g^{2}-9g+8-8=188-8
Me tango 8 mai i ngā taha e rua o te whārite.
3g^{2}-9g=188-8
Mā te tango i te 8 i a ia ake anō ka toe ko te 0.
3g^{2}-9g=180
Tango 8 mai i 188.
\frac{3g^{2}-9g}{3}=\frac{180}{3}
Whakawehea ngā taha e rua ki te 3.
g^{2}+\left(-\frac{9}{3}\right)g=\frac{180}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
g^{2}-3g=\frac{180}{3}
Whakawehe -9 ki te 3.
g^{2}-3g=60
Whakawehe 180 ki te 3.
g^{2}-3g+\left(-\frac{3}{2}\right)^{2}=60+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
g^{2}-3g+\frac{9}{4}=60+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
g^{2}-3g+\frac{9}{4}=\frac{249}{4}
Tāpiri 60 ki te \frac{9}{4}.
\left(g-\frac{3}{2}\right)^{2}=\frac{249}{4}
Tauwehea g^{2}-3g+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(g-\frac{3}{2}\right)^{2}}=\sqrt{\frac{249}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
g-\frac{3}{2}=\frac{\sqrt{249}}{2} g-\frac{3}{2}=-\frac{\sqrt{249}}{2}
Whakarūnātia.
g=\frac{\sqrt{249}+3}{2} g=\frac{3-\sqrt{249}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.