Whakaoti mō x
x=-\frac{7}{31}\approx -0.225806452
Graph
Tohaina
Kua tāruatia ki te papatopenga
8\times 5+1=5\left(-\frac{6\times 5+1}{5}\right)x+6\times 5+4
Whakareatia ngā taha e rua o te whārite ki te 5.
40+1=5\left(-\frac{6\times 5+1}{5}\right)x+6\times 5+4
Whakareatia te 8 ki te 5, ka 40.
41=5\left(-\frac{6\times 5+1}{5}\right)x+6\times 5+4
Tāpirihia te 40 ki te 1, ka 41.
41=5\left(-\frac{30+1}{5}\right)x+6\times 5+4
Whakareatia te 6 ki te 5, ka 30.
41=5\left(-\frac{31}{5}\right)x+6\times 5+4
Tāpirihia te 30 ki te 1, ka 31.
41=-31x+6\times 5+4
Me whakakore te 5 me te 5.
41=-31x+30+4
Whakareatia te 6 ki te 5, ka 30.
41=-31x+34
Tāpirihia te 30 ki te 4, ka 34.
-31x+34=41
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-31x=41-34
Tangohia te 34 mai i ngā taha e rua.
-31x=7
Tangohia te 34 i te 41, ka 7.
x=\frac{7}{-31}
Whakawehea ngā taha e rua ki te -31.
x=-\frac{7}{31}
Ka taea te hautanga \frac{7}{-31} te tuhi anō ko -\frac{7}{31} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}