Whakaoti mō x (complex solution)
x=\frac{9+\sqrt{39919}i}{10}\approx 0.9+19.979739738i
x=\frac{-\sqrt{39919}i+9}{10}\approx 0.9-19.979739738i
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{9}{2}x-\frac{5}{2}x^{2}=1000
Pahekotia te 7x me -\frac{5}{2}x, ka \frac{9}{2}x.
\frac{9}{2}x-\frac{5}{2}x^{2}-1000=0
Tangohia te 1000 mai i ngā taha e rua.
-\frac{5}{2}x^{2}+\frac{9}{2}x-1000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{9}{2}±\sqrt{\left(\frac{9}{2}\right)^{2}-4\left(-\frac{5}{2}\right)\left(-1000\right)}}{2\left(-\frac{5}{2}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{5}{2} mō a, \frac{9}{2} mō b, me -1000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-4\left(-\frac{5}{2}\right)\left(-1000\right)}}{2\left(-\frac{5}{2}\right)}
Pūruatia \frac{9}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}+10\left(-1000\right)}}{2\left(-\frac{5}{2}\right)}
Whakareatia -4 ki te -\frac{5}{2}.
x=\frac{-\frac{9}{2}±\sqrt{\frac{81}{4}-10000}}{2\left(-\frac{5}{2}\right)}
Whakareatia 10 ki te -1000.
x=\frac{-\frac{9}{2}±\sqrt{-\frac{39919}{4}}}{2\left(-\frac{5}{2}\right)}
Tāpiri \frac{81}{4} ki te -10000.
x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{2\left(-\frac{5}{2}\right)}
Tuhia te pūtakerua o te -\frac{39919}{4}.
x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{-5}
Whakareatia 2 ki te -\frac{5}{2}.
x=\frac{-9+\sqrt{39919}i}{-5\times 2}
Nā, me whakaoti te whārite x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{-5} ina he tāpiri te ±. Tāpiri -\frac{9}{2} ki te \frac{i\sqrt{39919}}{2}.
x=\frac{-\sqrt{39919}i+9}{10}
Whakawehe \frac{-9+i\sqrt{39919}}{2} ki te -5.
x=\frac{-\sqrt{39919}i-9}{-5\times 2}
Nā, me whakaoti te whārite x=\frac{-\frac{9}{2}±\frac{\sqrt{39919}i}{2}}{-5} ina he tango te ±. Tango \frac{i\sqrt{39919}}{2} mai i -\frac{9}{2}.
x=\frac{9+\sqrt{39919}i}{10}
Whakawehe \frac{-9-i\sqrt{39919}}{2} ki te -5.
x=\frac{-\sqrt{39919}i+9}{10} x=\frac{9+\sqrt{39919}i}{10}
Kua oti te whārite te whakatau.
\frac{9}{2}x-\frac{5}{2}x^{2}=1000
Pahekotia te 7x me -\frac{5}{2}x, ka \frac{9}{2}x.
-\frac{5}{2}x^{2}+\frac{9}{2}x=1000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-\frac{5}{2}x^{2}+\frac{9}{2}x}{-\frac{5}{2}}=\frac{1000}{-\frac{5}{2}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{\frac{9}{2}}{-\frac{5}{2}}x=\frac{1000}{-\frac{5}{2}}
Mā te whakawehe ki te -\frac{5}{2} ka wetekia te whakareanga ki te -\frac{5}{2}.
x^{2}-\frac{9}{5}x=\frac{1000}{-\frac{5}{2}}
Whakawehe \frac{9}{2} ki te -\frac{5}{2} mā te whakarea \frac{9}{2} ki te tau huripoki o -\frac{5}{2}.
x^{2}-\frac{9}{5}x=-400
Whakawehe 1000 ki te -\frac{5}{2} mā te whakarea 1000 ki te tau huripoki o -\frac{5}{2}.
x^{2}-\frac{9}{5}x+\left(-\frac{9}{10}\right)^{2}=-400+\left(-\frac{9}{10}\right)^{2}
Whakawehea te -\frac{9}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{9}{10}. Nā, tāpiria te pūrua o te -\frac{9}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{9}{5}x+\frac{81}{100}=-400+\frac{81}{100}
Pūruatia -\frac{9}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{9}{5}x+\frac{81}{100}=-\frac{39919}{100}
Tāpiri -400 ki te \frac{81}{100}.
\left(x-\frac{9}{10}\right)^{2}=-\frac{39919}{100}
Tauwehea x^{2}-\frac{9}{5}x+\frac{81}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{10}\right)^{2}}=\sqrt{-\frac{39919}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{9}{10}=\frac{\sqrt{39919}i}{10} x-\frac{9}{10}=-\frac{\sqrt{39919}i}{10}
Whakarūnātia.
x=\frac{9+\sqrt{39919}i}{10} x=\frac{-\sqrt{39919}i+9}{10}
Me tāpiri \frac{9}{10} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}