Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7\left(x+2x^{2}\right)
Tauwehea te 7.
x\left(1+2x\right)
Whakaarohia te x+2x^{2}. Tauwehea te x.
7x\left(2x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
14x^{2}+7x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}}}{2\times 14}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±7}{2\times 14}
Tuhia te pūtakerua o te 7^{2}.
x=\frac{-7±7}{28}
Whakareatia 2 ki te 14.
x=\frac{0}{28}
Nā, me whakaoti te whārite x=\frac{-7±7}{28} ina he tāpiri te ±. Tāpiri -7 ki te 7.
x=0
Whakawehe 0 ki te 28.
x=-\frac{14}{28}
Nā, me whakaoti te whārite x=\frac{-7±7}{28} ina he tango te ±. Tango 7 mai i -7.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-14}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
14x^{2}+7x=14x\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
14x^{2}+7x=14x\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
14x^{2}+7x=14x\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
14x^{2}+7x=7x\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 14 me te 2.