Whakaoti mō x
x=\frac{\sqrt{2}}{2}\approx 0.707106781
x=-\frac{\sqrt{2}}{2}\approx -0.707106781
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x^{2}\times 4=14
Whakareatia te x ki te x, ka x^{2}.
28x^{2}=14
Whakareatia te 7 ki te 4, ka 28.
x^{2}=\frac{14}{28}
Whakawehea ngā taha e rua ki te 28.
x^{2}=\frac{1}{2}
Whakahekea te hautanga \frac{14}{28} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
7x^{2}\times 4=14
Whakareatia te x ki te x, ka x^{2}.
28x^{2}=14
Whakareatia te 7 ki te 4, ka 28.
28x^{2}-14=0
Tangohia te 14 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 28\left(-14\right)}}{2\times 28}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 28 mō a, 0 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 28\left(-14\right)}}{2\times 28}
Pūrua 0.
x=\frac{0±\sqrt{-112\left(-14\right)}}{2\times 28}
Whakareatia -4 ki te 28.
x=\frac{0±\sqrt{1568}}{2\times 28}
Whakareatia -112 ki te -14.
x=\frac{0±28\sqrt{2}}{2\times 28}
Tuhia te pūtakerua o te 1568.
x=\frac{0±28\sqrt{2}}{56}
Whakareatia 2 ki te 28.
x=\frac{\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±28\sqrt{2}}{56} ina he tāpiri te ±.
x=-\frac{\sqrt{2}}{2}
Nā, me whakaoti te whārite x=\frac{0±28\sqrt{2}}{56} ina he tango te ±.
x=\frac{\sqrt{2}}{2} x=-\frac{\sqrt{2}}{2}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}