Whakaoti mō x
x=\frac{\sqrt{9165}}{1050}-\frac{19}{210}\approx 0.000699054
x=-\frac{\sqrt{9165}}{1050}-\frac{19}{210}\approx -0.181651435
Graph
Tohaina
Kua tāruatia ki te papatopenga
7875x^{2}+1425x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1425±\sqrt{1425^{2}-4\times 7875\left(-1\right)}}{2\times 7875}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7875 mō a, 1425 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1425±\sqrt{2030625-4\times 7875\left(-1\right)}}{2\times 7875}
Pūrua 1425.
x=\frac{-1425±\sqrt{2030625-31500\left(-1\right)}}{2\times 7875}
Whakareatia -4 ki te 7875.
x=\frac{-1425±\sqrt{2030625+31500}}{2\times 7875}
Whakareatia -31500 ki te -1.
x=\frac{-1425±\sqrt{2062125}}{2\times 7875}
Tāpiri 2030625 ki te 31500.
x=\frac{-1425±15\sqrt{9165}}{2\times 7875}
Tuhia te pūtakerua o te 2062125.
x=\frac{-1425±15\sqrt{9165}}{15750}
Whakareatia 2 ki te 7875.
x=\frac{15\sqrt{9165}-1425}{15750}
Nā, me whakaoti te whārite x=\frac{-1425±15\sqrt{9165}}{15750} ina he tāpiri te ±. Tāpiri -1425 ki te 15\sqrt{9165}.
x=\frac{\sqrt{9165}}{1050}-\frac{19}{210}
Whakawehe -1425+15\sqrt{9165} ki te 15750.
x=\frac{-15\sqrt{9165}-1425}{15750}
Nā, me whakaoti te whārite x=\frac{-1425±15\sqrt{9165}}{15750} ina he tango te ±. Tango 15\sqrt{9165} mai i -1425.
x=-\frac{\sqrt{9165}}{1050}-\frac{19}{210}
Whakawehe -1425-15\sqrt{9165} ki te 15750.
x=\frac{\sqrt{9165}}{1050}-\frac{19}{210} x=-\frac{\sqrt{9165}}{1050}-\frac{19}{210}
Kua oti te whārite te whakatau.
7875x^{2}+1425x-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
7875x^{2}+1425x-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
7875x^{2}+1425x=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
7875x^{2}+1425x=1
Tango -1 mai i 0.
\frac{7875x^{2}+1425x}{7875}=\frac{1}{7875}
Whakawehea ngā taha e rua ki te 7875.
x^{2}+\frac{1425}{7875}x=\frac{1}{7875}
Mā te whakawehe ki te 7875 ka wetekia te whakareanga ki te 7875.
x^{2}+\frac{19}{105}x=\frac{1}{7875}
Whakahekea te hautanga \frac{1425}{7875} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 75.
x^{2}+\frac{19}{105}x+\left(\frac{19}{210}\right)^{2}=\frac{1}{7875}+\left(\frac{19}{210}\right)^{2}
Whakawehea te \frac{19}{105}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{19}{210}. Nā, tāpiria te pūrua o te \frac{19}{210} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{19}{105}x+\frac{361}{44100}=\frac{1}{7875}+\frac{361}{44100}
Pūruatia \frac{19}{210} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{19}{105}x+\frac{361}{44100}=\frac{611}{73500}
Tāpiri \frac{1}{7875} ki te \frac{361}{44100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{19}{210}\right)^{2}=\frac{611}{73500}
Tauwehea x^{2}+\frac{19}{105}x+\frac{361}{44100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{210}\right)^{2}}=\sqrt{\frac{611}{73500}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{19}{210}=\frac{\sqrt{9165}}{1050} x+\frac{19}{210}=-\frac{\sqrt{9165}}{1050}
Whakarūnātia.
x=\frac{\sqrt{9165}}{1050}-\frac{19}{210} x=-\frac{\sqrt{9165}}{1050}-\frac{19}{210}
Me tango \frac{19}{210} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}