Aromātai
\frac{14463367}{3}\approx 4821122.333333333
Tauwehe
\frac{139 \cdot 104053}{3} = 4821122\frac{1}{3} = 4821122.333333333
Tohaina
Kua tāruatia ki te papatopenga
4821122+\frac{2}{6}
Whakareatia te 7751 ki te 622, ka 4821122.
4821122+\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{14463366}{3}+\frac{1}{3}
Me tahuri te 4821122 ki te hautau \frac{14463366}{3}.
\frac{14463366+1}{3}
Tā te mea he rite te tauraro o \frac{14463366}{3} me \frac{1}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{14463367}{3}
Tāpirihia te 14463366 ki te 1, ka 14463367.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}