Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

77=3.14x^{2}
Whakareatia te x ki te x, ka x^{2}.
3.14x^{2}=77
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}=\frac{77}{3.14}
Whakawehea ngā taha e rua ki te 3.14.
x^{2}=\frac{7700}{314}
Whakarohaina te \frac{77}{3.14} mā te whakarea i te taurunga me te tauraro ki te 100.
x^{2}=\frac{3850}{157}
Whakahekea te hautanga \frac{7700}{314} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{5\sqrt{24178}}{157} x=-\frac{5\sqrt{24178}}{157}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
77=3.14x^{2}
Whakareatia te x ki te x, ka x^{2}.
3.14x^{2}=77
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3.14x^{2}-77=0
Tangohia te 77 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\times 3.14\left(-77\right)}}{2\times 3.14}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 3.14 mō a, 0 mō b, me -77 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3.14\left(-77\right)}}{2\times 3.14}
Pūrua 0.
x=\frac{0±\sqrt{-12.56\left(-77\right)}}{2\times 3.14}
Whakareatia -4 ki te 3.14.
x=\frac{0±\sqrt{967.12}}{2\times 3.14}
Whakareatia -12.56 ki te -77.
x=\frac{0±\frac{\sqrt{24178}}{5}}{2\times 3.14}
Tuhia te pūtakerua o te 967.12.
x=\frac{0±\frac{\sqrt{24178}}{5}}{6.28}
Whakareatia 2 ki te 3.14.
x=\frac{5\sqrt{24178}}{157}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{24178}}{5}}{6.28} ina he tāpiri te ±.
x=-\frac{5\sqrt{24178}}{157}
Nā, me whakaoti te whārite x=\frac{0±\frac{\sqrt{24178}}{5}}{6.28} ina he tango te ±.
x=\frac{5\sqrt{24178}}{157} x=-\frac{5\sqrt{24178}}{157}
Kua oti te whārite te whakatau.