Tauwehe
\left(11r-3\right)\left(7r+6\right)
Aromātai
\left(11r-3\right)\left(7r+6\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=45 ab=77\left(-18\right)=-1386
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 77r^{2}+ar+br-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,1386 -2,693 -3,462 -6,231 -7,198 -9,154 -11,126 -14,99 -18,77 -21,66 -22,63 -33,42
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -1386.
-1+1386=1385 -2+693=691 -3+462=459 -6+231=225 -7+198=191 -9+154=145 -11+126=115 -14+99=85 -18+77=59 -21+66=45 -22+63=41 -33+42=9
Tātaihia te tapeke mō ia takirua.
a=-21 b=66
Ko te otinga te takirua ka hoatu i te tapeke 45.
\left(77r^{2}-21r\right)+\left(66r-18\right)
Tuhia anō te 77r^{2}+45r-18 hei \left(77r^{2}-21r\right)+\left(66r-18\right).
7r\left(11r-3\right)+6\left(11r-3\right)
Tauwehea te 7r i te tuatahi me te 6 i te rōpū tuarua.
\left(11r-3\right)\left(7r+6\right)
Whakatauwehea atu te kīanga pātahi 11r-3 mā te whakamahi i te āhuatanga tātai tohatoha.
77r^{2}+45r-18=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
r=\frac{-45±\sqrt{45^{2}-4\times 77\left(-18\right)}}{2\times 77}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
r=\frac{-45±\sqrt{2025-4\times 77\left(-18\right)}}{2\times 77}
Pūrua 45.
r=\frac{-45±\sqrt{2025-308\left(-18\right)}}{2\times 77}
Whakareatia -4 ki te 77.
r=\frac{-45±\sqrt{2025+5544}}{2\times 77}
Whakareatia -308 ki te -18.
r=\frac{-45±\sqrt{7569}}{2\times 77}
Tāpiri 2025 ki te 5544.
r=\frac{-45±87}{2\times 77}
Tuhia te pūtakerua o te 7569.
r=\frac{-45±87}{154}
Whakareatia 2 ki te 77.
r=\frac{42}{154}
Nā, me whakaoti te whārite r=\frac{-45±87}{154} ina he tāpiri te ±. Tāpiri -45 ki te 87.
r=\frac{3}{11}
Whakahekea te hautanga \frac{42}{154} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
r=-\frac{132}{154}
Nā, me whakaoti te whārite r=\frac{-45±87}{154} ina he tango te ±. Tango 87 mai i -45.
r=-\frac{6}{7}
Whakahekea te hautanga \frac{-132}{154} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 22.
77r^{2}+45r-18=77\left(r-\frac{3}{11}\right)\left(r-\left(-\frac{6}{7}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{11} mō te x_{1} me te -\frac{6}{7} mō te x_{2}.
77r^{2}+45r-18=77\left(r-\frac{3}{11}\right)\left(r+\frac{6}{7}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
77r^{2}+45r-18=77\times \frac{11r-3}{11}\left(r+\frac{6}{7}\right)
Tango \frac{3}{11} mai i r mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
77r^{2}+45r-18=77\times \frac{11r-3}{11}\times \frac{7r+6}{7}
Tāpiri \frac{6}{7} ki te r mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
77r^{2}+45r-18=77\times \frac{\left(11r-3\right)\left(7r+6\right)}{11\times 7}
Whakareatia \frac{11r-3}{11} ki te \frac{7r+6}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
77r^{2}+45r-18=77\times \frac{\left(11r-3\right)\left(7r+6\right)}{77}
Whakareatia 11 ki te 7.
77r^{2}+45r-18=\left(11r-3\right)\left(7r+6\right)
Whakakorea atu te tauwehe pūnoa nui rawa 77 i roto i te 77 me te 77.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}