Whakaoti mō x
x = \frac{\sqrt{317121} + 563}{2} \approx 563.06748747
x=\frac{563-\sqrt{317121}}{2}\approx -0.06748747
Graph
Tohaina
Kua tāruatia ki te papatopenga
76+x\left(1126-x\right)=x^{2}
Whakareatia te x ki te x, ka x^{2}.
76+1126x-x^{2}=x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 1126-x.
76+1126x-x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
76+1126x-2x^{2}=0
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
-2x^{2}+1126x+76=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1126±\sqrt{1126^{2}-4\left(-2\right)\times 76}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 1126 mō b, me 76 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1126±\sqrt{1267876-4\left(-2\right)\times 76}}{2\left(-2\right)}
Pūrua 1126.
x=\frac{-1126±\sqrt{1267876+8\times 76}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-1126±\sqrt{1267876+608}}{2\left(-2\right)}
Whakareatia 8 ki te 76.
x=\frac{-1126±\sqrt{1268484}}{2\left(-2\right)}
Tāpiri 1267876 ki te 608.
x=\frac{-1126±2\sqrt{317121}}{2\left(-2\right)}
Tuhia te pūtakerua o te 1268484.
x=\frac{-1126±2\sqrt{317121}}{-4}
Whakareatia 2 ki te -2.
x=\frac{2\sqrt{317121}-1126}{-4}
Nā, me whakaoti te whārite x=\frac{-1126±2\sqrt{317121}}{-4} ina he tāpiri te ±. Tāpiri -1126 ki te 2\sqrt{317121}.
x=\frac{563-\sqrt{317121}}{2}
Whakawehe -1126+2\sqrt{317121} ki te -4.
x=\frac{-2\sqrt{317121}-1126}{-4}
Nā, me whakaoti te whārite x=\frac{-1126±2\sqrt{317121}}{-4} ina he tango te ±. Tango 2\sqrt{317121} mai i -1126.
x=\frac{\sqrt{317121}+563}{2}
Whakawehe -1126-2\sqrt{317121} ki te -4.
x=\frac{563-\sqrt{317121}}{2} x=\frac{\sqrt{317121}+563}{2}
Kua oti te whārite te whakatau.
76+x\left(1126-x\right)=x^{2}
Whakareatia te x ki te x, ka x^{2}.
76+1126x-x^{2}=x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 1126-x.
76+1126x-x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
76+1126x-2x^{2}=0
Pahekotia te -x^{2} me -x^{2}, ka -2x^{2}.
1126x-2x^{2}=-76
Tangohia te 76 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-2x^{2}+1126x=-76
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}+1126x}{-2}=-\frac{76}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{1126}{-2}x=-\frac{76}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-563x=-\frac{76}{-2}
Whakawehe 1126 ki te -2.
x^{2}-563x=38
Whakawehe -76 ki te -2.
x^{2}-563x+\left(-\frac{563}{2}\right)^{2}=38+\left(-\frac{563}{2}\right)^{2}
Whakawehea te -563, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{563}{2}. Nā, tāpiria te pūrua o te -\frac{563}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-563x+\frac{316969}{4}=38+\frac{316969}{4}
Pūruatia -\frac{563}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-563x+\frac{316969}{4}=\frac{317121}{4}
Tāpiri 38 ki te \frac{316969}{4}.
\left(x-\frac{563}{2}\right)^{2}=\frac{317121}{4}
Tauwehea x^{2}-563x+\frac{316969}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{563}{2}\right)^{2}}=\sqrt{\frac{317121}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{563}{2}=\frac{\sqrt{317121}}{2} x-\frac{563}{2}=-\frac{\sqrt{317121}}{2}
Whakarūnātia.
x=\frac{\sqrt{317121}+563}{2} x=\frac{563-\sqrt{317121}}{2}
Me tāpiri \frac{563}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}