Whakaoti mō x
x=6\sqrt{30}+34\approx 66.86335345
x=34-6\sqrt{30}\approx 1.13664655
Graph
Tohaina
Kua tāruatia ki te papatopenga
76x-76-x^{2}=8x
Tangohia te x^{2} mai i ngā taha e rua.
76x-76-x^{2}-8x=0
Tangohia te 8x mai i ngā taha e rua.
68x-76-x^{2}=0
Pahekotia te 76x me -8x, ka 68x.
-x^{2}+68x-76=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-68±\sqrt{68^{2}-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 68 mō b, me -76 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-68±\sqrt{4624-4\left(-1\right)\left(-76\right)}}{2\left(-1\right)}
Pūrua 68.
x=\frac{-68±\sqrt{4624+4\left(-76\right)}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-68±\sqrt{4624-304}}{2\left(-1\right)}
Whakareatia 4 ki te -76.
x=\frac{-68±\sqrt{4320}}{2\left(-1\right)}
Tāpiri 4624 ki te -304.
x=\frac{-68±12\sqrt{30}}{2\left(-1\right)}
Tuhia te pūtakerua o te 4320.
x=\frac{-68±12\sqrt{30}}{-2}
Whakareatia 2 ki te -1.
x=\frac{12\sqrt{30}-68}{-2}
Nā, me whakaoti te whārite x=\frac{-68±12\sqrt{30}}{-2} ina he tāpiri te ±. Tāpiri -68 ki te 12\sqrt{30}.
x=34-6\sqrt{30}
Whakawehe -68+12\sqrt{30} ki te -2.
x=\frac{-12\sqrt{30}-68}{-2}
Nā, me whakaoti te whārite x=\frac{-68±12\sqrt{30}}{-2} ina he tango te ±. Tango 12\sqrt{30} mai i -68.
x=6\sqrt{30}+34
Whakawehe -68-12\sqrt{30} ki te -2.
x=34-6\sqrt{30} x=6\sqrt{30}+34
Kua oti te whārite te whakatau.
76x-76-x^{2}=8x
Tangohia te x^{2} mai i ngā taha e rua.
76x-76-x^{2}-8x=0
Tangohia te 8x mai i ngā taha e rua.
68x-76-x^{2}=0
Pahekotia te 76x me -8x, ka 68x.
68x-x^{2}=76
Me tāpiri te 76 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-x^{2}+68x=76
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+68x}{-1}=\frac{76}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{68}{-1}x=\frac{76}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-68x=\frac{76}{-1}
Whakawehe 68 ki te -1.
x^{2}-68x=-76
Whakawehe 76 ki te -1.
x^{2}-68x+\left(-34\right)^{2}=-76+\left(-34\right)^{2}
Whakawehea te -68, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -34. Nā, tāpiria te pūrua o te -34 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-68x+1156=-76+1156
Pūrua -34.
x^{2}-68x+1156=1080
Tāpiri -76 ki te 1156.
\left(x-34\right)^{2}=1080
Tauwehea x^{2}-68x+1156. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-34\right)^{2}}=\sqrt{1080}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-34=6\sqrt{30} x-34=-6\sqrt{30}
Whakarūnātia.
x=6\sqrt{30}+34 x=34-6\sqrt{30}
Me tāpiri 34 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}