Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

1350=\left(75+x\right)\left(18-x\right)
Whakareatia te 75 ki te 18, ka 1350.
1350=1350-57x-x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 75+x ki te 18-x ka whakakotahi i ngā kupu rite.
1350-57x-x^{2}=1350
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1350-57x-x^{2}-1350=0
Tangohia te 1350 mai i ngā taha e rua.
-57x-x^{2}=0
Tangohia te 1350 i te 1350, ka 0.
-x^{2}-57x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-57\right)±\sqrt{\left(-57\right)^{2}}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -57 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-57\right)±57}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(-57\right)^{2}.
x=\frac{57±57}{2\left(-1\right)}
Ko te tauaro o -57 ko 57.
x=\frac{57±57}{-2}
Whakareatia 2 ki te -1.
x=\frac{114}{-2}
Nā, me whakaoti te whārite x=\frac{57±57}{-2} ina he tāpiri te ±. Tāpiri 57 ki te 57.
x=-57
Whakawehe 114 ki te -2.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{57±57}{-2} ina he tango te ±. Tango 57 mai i 57.
x=0
Whakawehe 0 ki te -2.
x=-57 x=0
Kua oti te whārite te whakatau.
1350=\left(75+x\right)\left(18-x\right)
Whakareatia te 75 ki te 18, ka 1350.
1350=1350-57x-x^{2}
Whakamahia te āhuatanga tuaritanga hei whakarea te 75+x ki te 18-x ka whakakotahi i ngā kupu rite.
1350-57x-x^{2}=1350
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-57x-x^{2}=1350-1350
Tangohia te 1350 mai i ngā taha e rua.
-57x-x^{2}=0
Tangohia te 1350 i te 1350, ka 0.
-x^{2}-57x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-57x}{-1}=\frac{0}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{57}{-1}\right)x=\frac{0}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+57x=\frac{0}{-1}
Whakawehe -57 ki te -1.
x^{2}+57x=0
Whakawehe 0 ki te -1.
x^{2}+57x+\left(\frac{57}{2}\right)^{2}=\left(\frac{57}{2}\right)^{2}
Whakawehea te 57, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{57}{2}. Nā, tāpiria te pūrua o te \frac{57}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+57x+\frac{3249}{4}=\frac{3249}{4}
Pūruatia \frac{57}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{57}{2}\right)^{2}=\frac{3249}{4}
Tauwehea x^{2}+57x+\frac{3249}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{57}{2}\right)^{2}}=\sqrt{\frac{3249}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{57}{2}=\frac{57}{2} x+\frac{57}{2}=-\frac{57}{2}
Whakarūnātia.
x=0 x=-57
Me tango \frac{57}{2} mai i ngā taha e rua o te whārite.