75 \% ( x - 1 ) - 25 \% ( x - 4 ) = 25 \% ( x + 6 )
Whakaoti mō x
x=5
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
75 \% ( x - 1 ) - 25 \% ( x - 4 ) = 25 \% ( x + 6 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{3}{4}\left(x-1\right)-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{3}{4}x+\frac{3}{4}\left(-1\right)-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te x-1.
\frac{3}{4}x-\frac{3}{4}-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Whakareatia te \frac{3}{4} ki te -1, ka -\frac{3}{4}.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x-\frac{1}{4}\left(-4\right)=\frac{25}{100}\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{1}{4} ki te x-4.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+\frac{-\left(-4\right)}{4}=\frac{25}{100}\left(x+6\right)
Tuhia te -\frac{1}{4}\left(-4\right) hei hautanga kotahi.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+\frac{4}{4}=\frac{25}{100}\left(x+6\right)
Whakareatia te -1 ki te -4, ka 4.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+1=\frac{25}{100}\left(x+6\right)
Whakawehea te 4 ki te 4, kia riro ko 1.
\frac{1}{2}x-\frac{3}{4}+1=\frac{25}{100}\left(x+6\right)
Pahekotia te \frac{3}{4}x me -\frac{1}{4}x, ka \frac{1}{2}x.
\frac{1}{2}x-\frac{3}{4}+\frac{4}{4}=\frac{25}{100}\left(x+6\right)
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{1}{2}x+\frac{-3+4}{4}=\frac{25}{100}\left(x+6\right)
Tā te mea he rite te tauraro o -\frac{3}{4} me \frac{4}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1}{2}x+\frac{1}{4}=\frac{25}{100}\left(x+6\right)
Tāpirihia te -3 ki te 4, ka 1.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}\left(x+6\right)
Whakahekea te hautanga \frac{25}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{1}{4}\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{4} ki te x+6.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{6}{4}
Whakareatia te \frac{1}{4} ki te 6, ka \frac{6}{4}.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}x=\frac{3}{2}
Tangohia te \frac{1}{4}x mai i ngā taha e rua.
\frac{1}{4}x+\frac{1}{4}=\frac{3}{2}
Pahekotia te \frac{1}{2}x me -\frac{1}{4}x, ka \frac{1}{4}x.
\frac{1}{4}x=\frac{3}{2}-\frac{1}{4}
Tangohia te \frac{1}{4} mai i ngā taha e rua.
\frac{1}{4}x=\frac{6}{4}-\frac{1}{4}
Ko te maha noa iti rawa atu o 2 me 4 ko 4. Me tahuri \frac{3}{2} me \frac{1}{4} ki te hautau me te tautūnga 4.
\frac{1}{4}x=\frac{6-1}{4}
Tā te mea he rite te tauraro o \frac{6}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}x=\frac{5}{4}
Tangohia te 1 i te 6, ka 5.
x=\frac{5}{4}\times 4
Me whakarea ngā taha e rua ki te 4, te tau utu o \frac{1}{4}.
x=5
Me whakakore te 4 me te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}