Whakaoti mō x
x = \frac{881}{840} = 1\frac{41}{840} \approx 1.048809524
Graph
Tohaina
Kua tāruatia ki te papatopenga
72x-\frac{18}{35}=75
Whakahekea te hautanga \frac{36}{70} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
72x=75+\frac{18}{35}
Me tāpiri te \frac{18}{35} ki ngā taha e rua.
72x=\frac{2625}{35}+\frac{18}{35}
Me tahuri te 75 ki te hautau \frac{2625}{35}.
72x=\frac{2625+18}{35}
Tā te mea he rite te tauraro o \frac{2625}{35} me \frac{18}{35}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
72x=\frac{2643}{35}
Tāpirihia te 2625 ki te 18, ka 2643.
x=\frac{\frac{2643}{35}}{72}
Whakawehea ngā taha e rua ki te 72.
x=\frac{2643}{35\times 72}
Tuhia te \frac{\frac{2643}{35}}{72} hei hautanga kotahi.
x=\frac{2643}{2520}
Whakareatia te 35 ki te 72, ka 2520.
x=\frac{881}{840}
Whakahekea te hautanga \frac{2643}{2520} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}