Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

72x^{2}+67-99=0
Tangohia te 99 mai i ngā taha e rua.
72x^{2}-32=0
Tangohia te 99 i te 67, ka -32.
9x^{2}-4=0
Whakawehea ngā taha e rua ki te 8.
\left(3x-2\right)\left(3x+2\right)=0
Whakaarohia te 9x^{2}-4. Tuhia anō te 9x^{2}-4 hei \left(3x\right)^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{3} x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te 3x+2=0.
72x^{2}=99-67
Tangohia te 67 mai i ngā taha e rua.
72x^{2}=32
Tangohia te 67 i te 99, ka 32.
x^{2}=\frac{32}{72}
Whakawehea ngā taha e rua ki te 72.
x^{2}=\frac{4}{9}
Whakahekea te hautanga \frac{32}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=\frac{2}{3} x=-\frac{2}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
72x^{2}+67-99=0
Tangohia te 99 mai i ngā taha e rua.
72x^{2}-32=0
Tangohia te 99 i te 67, ka -32.
x=\frac{0±\sqrt{0^{2}-4\times 72\left(-32\right)}}{2\times 72}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 72 mō a, 0 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 72\left(-32\right)}}{2\times 72}
Pūrua 0.
x=\frac{0±\sqrt{-288\left(-32\right)}}{2\times 72}
Whakareatia -4 ki te 72.
x=\frac{0±\sqrt{9216}}{2\times 72}
Whakareatia -288 ki te -32.
x=\frac{0±96}{2\times 72}
Tuhia te pūtakerua o te 9216.
x=\frac{0±96}{144}
Whakareatia 2 ki te 72.
x=\frac{2}{3}
Nā, me whakaoti te whārite x=\frac{0±96}{144} ina he tāpiri te ±. Whakahekea te hautanga \frac{96}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 48.
x=-\frac{2}{3}
Nā, me whakaoti te whārite x=\frac{0±96}{144} ina he tango te ±. Whakahekea te hautanga \frac{-96}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 48.
x=\frac{2}{3} x=-\frac{2}{3}
Kua oti te whārite te whakatau.