Tauwehe
72\left(n-\frac{1-\sqrt{10}}{9}\right)\left(n-\frac{\sqrt{10}+1}{9}\right)
Aromātai
72n^{2}-16n-8
Tohaina
Kua tāruatia ki te papatopenga
72n^{2}-16n-8=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
n=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 72\left(-8\right)}}{2\times 72}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-\left(-16\right)±\sqrt{256-4\times 72\left(-8\right)}}{2\times 72}
Pūrua -16.
n=\frac{-\left(-16\right)±\sqrt{256-288\left(-8\right)}}{2\times 72}
Whakareatia -4 ki te 72.
n=\frac{-\left(-16\right)±\sqrt{256+2304}}{2\times 72}
Whakareatia -288 ki te -8.
n=\frac{-\left(-16\right)±\sqrt{2560}}{2\times 72}
Tāpiri 256 ki te 2304.
n=\frac{-\left(-16\right)±16\sqrt{10}}{2\times 72}
Tuhia te pūtakerua o te 2560.
n=\frac{16±16\sqrt{10}}{2\times 72}
Ko te tauaro o -16 ko 16.
n=\frac{16±16\sqrt{10}}{144}
Whakareatia 2 ki te 72.
n=\frac{16\sqrt{10}+16}{144}
Nā, me whakaoti te whārite n=\frac{16±16\sqrt{10}}{144} ina he tāpiri te ±. Tāpiri 16 ki te 16\sqrt{10}.
n=\frac{\sqrt{10}+1}{9}
Whakawehe 16+16\sqrt{10} ki te 144.
n=\frac{16-16\sqrt{10}}{144}
Nā, me whakaoti te whārite n=\frac{16±16\sqrt{10}}{144} ina he tango te ±. Tango 16\sqrt{10} mai i 16.
n=\frac{1-\sqrt{10}}{9}
Whakawehe 16-16\sqrt{10} ki te 144.
72n^{2}-16n-8=72\left(n-\frac{\sqrt{10}+1}{9}\right)\left(n-\frac{1-\sqrt{10}}{9}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1+\sqrt{10}}{9} mō te x_{1} me te \frac{1-\sqrt{10}}{9} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}