Aromātai
-700
Tauwehe
-700
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
72 \cdot 2 \frac { 1 } { 3 } - 372 \cdot 2 \frac { 1 } { 3 } =
Tohaina
Kua tāruatia ki te papatopenga
72\times \frac{6+1}{3}-372\times \frac{2\times 3+1}{3}
Whakareatia te 2 ki te 3, ka 6.
72\times \frac{7}{3}-372\times \frac{2\times 3+1}{3}
Tāpirihia te 6 ki te 1, ka 7.
\frac{72\times 7}{3}-372\times \frac{2\times 3+1}{3}
Tuhia te 72\times \frac{7}{3} hei hautanga kotahi.
\frac{504}{3}-372\times \frac{2\times 3+1}{3}
Whakareatia te 72 ki te 7, ka 504.
168-372\times \frac{2\times 3+1}{3}
Whakawehea te 504 ki te 3, kia riro ko 168.
168-372\times \frac{6+1}{3}
Whakareatia te 2 ki te 3, ka 6.
168-372\times \frac{7}{3}
Tāpirihia te 6 ki te 1, ka 7.
168-\frac{372\times 7}{3}
Tuhia te 372\times \frac{7}{3} hei hautanga kotahi.
168-\frac{2604}{3}
Whakareatia te 372 ki te 7, ka 2604.
168-868
Whakawehea te 2604 ki te 3, kia riro ko 868.
-700
Tangohia te 868 i te 168, ka -700.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}