Whakaoti mō x
x=2\sqrt{10}-2\approx 4.32455532
x=-2\sqrt{10}-2\approx -8.32455532
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x^{2}+8x=72
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+8x-72=0
Tangohia te 72 mai i ngā taha e rua.
x=\frac{-8±\sqrt{8^{2}-4\times 2\left(-72\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 8 mō b, me -72 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 2\left(-72\right)}}{2\times 2}
Pūrua 8.
x=\frac{-8±\sqrt{64-8\left(-72\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-8±\sqrt{64+576}}{2\times 2}
Whakareatia -8 ki te -72.
x=\frac{-8±\sqrt{640}}{2\times 2}
Tāpiri 64 ki te 576.
x=\frac{-8±8\sqrt{10}}{2\times 2}
Tuhia te pūtakerua o te 640.
x=\frac{-8±8\sqrt{10}}{4}
Whakareatia 2 ki te 2.
x=\frac{8\sqrt{10}-8}{4}
Nā, me whakaoti te whārite x=\frac{-8±8\sqrt{10}}{4} ina he tāpiri te ±. Tāpiri -8 ki te 8\sqrt{10}.
x=2\sqrt{10}-2
Whakawehe -8+8\sqrt{10} ki te 4.
x=\frac{-8\sqrt{10}-8}{4}
Nā, me whakaoti te whārite x=\frac{-8±8\sqrt{10}}{4} ina he tango te ±. Tango 8\sqrt{10} mai i -8.
x=-2\sqrt{10}-2
Whakawehe -8-8\sqrt{10} ki te 4.
x=2\sqrt{10}-2 x=-2\sqrt{10}-2
Kua oti te whārite te whakatau.
2x^{2}+8x=72
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{2x^{2}+8x}{2}=\frac{72}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{8}{2}x=\frac{72}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+4x=\frac{72}{2}
Whakawehe 8 ki te 2.
x^{2}+4x=36
Whakawehe 72 ki te 2.
x^{2}+4x+2^{2}=36+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+4x+4=36+4
Pūrua 2.
x^{2}+4x+4=40
Tāpiri 36 ki te 4.
\left(x+2\right)^{2}=40
Tauwehea x^{2}+4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{40}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+2=2\sqrt{10} x+2=-2\sqrt{10}
Whakarūnātia.
x=2\sqrt{10}-2 x=-2\sqrt{10}-2
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}