Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

72\left(y-3\right)^{2}=8
Tē taea kia ōrite te tāupe y ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(y-3\right)^{2}.
72\left(y^{2}-6y+9\right)=8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-3\right)^{2}.
72y^{2}-432y+648=8
Whakamahia te āhuatanga tohatoha hei whakarea te 72 ki te y^{2}-6y+9.
72y^{2}-432y+648-8=0
Tangohia te 8 mai i ngā taha e rua.
72y^{2}-432y+640=0
Tangohia te 8 i te 648, ka 640.
y=\frac{-\left(-432\right)±\sqrt{\left(-432\right)^{2}-4\times 72\times 640}}{2\times 72}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 72 mō a, -432 mō b, me 640 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-432\right)±\sqrt{186624-4\times 72\times 640}}{2\times 72}
Pūrua -432.
y=\frac{-\left(-432\right)±\sqrt{186624-288\times 640}}{2\times 72}
Whakareatia -4 ki te 72.
y=\frac{-\left(-432\right)±\sqrt{186624-184320}}{2\times 72}
Whakareatia -288 ki te 640.
y=\frac{-\left(-432\right)±\sqrt{2304}}{2\times 72}
Tāpiri 186624 ki te -184320.
y=\frac{-\left(-432\right)±48}{2\times 72}
Tuhia te pūtakerua o te 2304.
y=\frac{432±48}{2\times 72}
Ko te tauaro o -432 ko 432.
y=\frac{432±48}{144}
Whakareatia 2 ki te 72.
y=\frac{480}{144}
Nā, me whakaoti te whārite y=\frac{432±48}{144} ina he tāpiri te ±. Tāpiri 432 ki te 48.
y=\frac{10}{3}
Whakahekea te hautanga \frac{480}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 48.
y=\frac{384}{144}
Nā, me whakaoti te whārite y=\frac{432±48}{144} ina he tango te ±. Tango 48 mai i 432.
y=\frac{8}{3}
Whakahekea te hautanga \frac{384}{144} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 48.
y=\frac{10}{3} y=\frac{8}{3}
Kua oti te whārite te whakatau.
72\left(y-3\right)^{2}=8
Tē taea kia ōrite te tāupe y ki 3 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te \left(y-3\right)^{2}.
72\left(y^{2}-6y+9\right)=8
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(y-3\right)^{2}.
72y^{2}-432y+648=8
Whakamahia te āhuatanga tohatoha hei whakarea te 72 ki te y^{2}-6y+9.
72y^{2}-432y=8-648
Tangohia te 648 mai i ngā taha e rua.
72y^{2}-432y=-640
Tangohia te 648 i te 8, ka -640.
\frac{72y^{2}-432y}{72}=-\frac{640}{72}
Whakawehea ngā taha e rua ki te 72.
y^{2}+\left(-\frac{432}{72}\right)y=-\frac{640}{72}
Mā te whakawehe ki te 72 ka wetekia te whakareanga ki te 72.
y^{2}-6y=-\frac{640}{72}
Whakawehe -432 ki te 72.
y^{2}-6y=-\frac{80}{9}
Whakahekea te hautanga \frac{-640}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
y^{2}-6y+\left(-3\right)^{2}=-\frac{80}{9}+\left(-3\right)^{2}
Whakawehea te -6, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -3. Nā, tāpiria te pūrua o te -3 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-6y+9=-\frac{80}{9}+9
Pūrua -3.
y^{2}-6y+9=\frac{1}{9}
Tāpiri -\frac{80}{9} ki te 9.
\left(y-3\right)^{2}=\frac{1}{9}
Tauwehea te y^{2}-6y+9. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-3\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-3=\frac{1}{3} y-3=-\frac{1}{3}
Whakarūnātia.
y=\frac{10}{3} y=\frac{8}{3}
Me tāpiri 3 ki ngā taha e rua o te whārite.