Aromātai
-\frac{70533}{50}=-1410.66
Tauwehe
-\frac{70533}{50} = -1410\frac{33}{50} = -1410.66
Tohaina
Kua tāruatia ki te papatopenga
\frac{10725+13}{15}-2134+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Whakareatia te 715 ki te 15, ka 10725.
\frac{10738}{15}-2134+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Tāpirihia te 10725 ki te 13, ka 10738.
\frac{10738}{15}-\frac{32010}{15}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Me tahuri te 2134 ki te hautau \frac{32010}{15}.
\frac{10738-32010}{15}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Tā te mea he rite te tauraro o \frac{10738}{15} me \frac{32010}{15}, me tango rāua mā te tango i ō raua taurunga.
-\frac{21272}{15}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Tangohia te 32010 i te 10738, ka -21272.
-\frac{21272}{15}+\frac{210+2}{15}-\frac{6\times 50+33}{50}
Whakareatia te 14 ki te 15, ka 210.
-\frac{21272}{15}+\frac{212}{15}-\frac{6\times 50+33}{50}
Tāpirihia te 210 ki te 2, ka 212.
\frac{-21272+212}{15}-\frac{6\times 50+33}{50}
Tā te mea he rite te tauraro o -\frac{21272}{15} me \frac{212}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-21060}{15}-\frac{6\times 50+33}{50}
Tāpirihia te -21272 ki te 212, ka -21060.
-1404-\frac{6\times 50+33}{50}
Whakawehea te -21060 ki te 15, kia riro ko -1404.
-1404-\frac{300+33}{50}
Whakareatia te 6 ki te 50, ka 300.
-1404-\frac{333}{50}
Tāpirihia te 300 ki te 33, ka 333.
-\frac{70200}{50}-\frac{333}{50}
Me tahuri te -1404 ki te hautau -\frac{70200}{50}.
\frac{-70200-333}{50}
Tā te mea he rite te tauraro o -\frac{70200}{50} me \frac{333}{50}, me tango rāua mā te tango i ō raua taurunga.
-\frac{70533}{50}
Tangohia te 333 i te -70200, ka -70533.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}