Aromātai
-\frac{56644\sqrt{321}}{963}+711\approx -342.853259697
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
711 - 196 \times \frac { 34 ^ { 2 } } { \sqrt { 46224 } }
Tohaina
Kua tāruatia ki te papatopenga
711-196\times \frac{1156}{\sqrt{46224}}
Tātaihia te 34 mā te pū o 2, kia riro ko 1156.
711-196\times \frac{1156}{12\sqrt{321}}
Tauwehea te 46224=12^{2}\times 321. Tuhia anō te pūtake rua o te hua \sqrt{12^{2}\times 321} hei hua o ngā pūtake rua \sqrt{12^{2}}\sqrt{321}. Tuhia te pūtakerua o te 12^{2}.
711-196\times \frac{1156\sqrt{321}}{12\left(\sqrt{321}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1156}{12\sqrt{321}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{321}.
711-196\times \frac{1156\sqrt{321}}{12\times 321}
Ko te pūrua o \sqrt{321} ko 321.
711-196\times \frac{289\sqrt{321}}{3\times 321}
Me whakakore tahi te 4 i te taurunga me te tauraro.
711-196\times \frac{289\sqrt{321}}{963}
Whakareatia te 3 ki te 321, ka 963.
711-\frac{196\times 289\sqrt{321}}{963}
Tuhia te 196\times \frac{289\sqrt{321}}{963} hei hautanga kotahi.
711-\frac{56644\sqrt{321}}{963}
Whakareatia te 196 ki te 289, ka 56644.
\frac{711\times 963}{963}-\frac{56644\sqrt{321}}{963}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 711 ki te \frac{963}{963}.
\frac{711\times 963-56644\sqrt{321}}{963}
Tā te mea he rite te tauraro o \frac{711\times 963}{963} me \frac{56644\sqrt{321}}{963}, me tango rāua mā te tango i ō raua taurunga.
\frac{684693-56644\sqrt{321}}{963}
Mahia ngā whakarea i roto o 711\times 963-56644\sqrt{321}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}