Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

711-196\times \frac{1156}{\sqrt{46224}}
Tātaihia te 34 mā te pū o 2, kia riro ko 1156.
711-196\times \frac{1156}{12\sqrt{321}}
Tauwehea te 46224=12^{2}\times 321. Tuhia anō te pūtake rua o te hua \sqrt{12^{2}\times 321} hei hua o ngā pūtake rua \sqrt{12^{2}}\sqrt{321}. Tuhia te pūtakerua o te 12^{2}.
711-196\times \frac{1156\sqrt{321}}{12\left(\sqrt{321}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1156}{12\sqrt{321}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{321}.
711-196\times \frac{1156\sqrt{321}}{12\times 321}
Ko te pūrua o \sqrt{321} ko 321.
711-196\times \frac{289\sqrt{321}}{3\times 321}
Me whakakore tahi te 4 i te taurunga me te tauraro.
711-196\times \frac{289\sqrt{321}}{963}
Whakareatia te 3 ki te 321, ka 963.
711-\frac{196\times 289\sqrt{321}}{963}
Tuhia te 196\times \frac{289\sqrt{321}}{963} hei hautanga kotahi.
711-\frac{56644\sqrt{321}}{963}
Whakareatia te 196 ki te 289, ka 56644.
\frac{711\times 963}{963}-\frac{56644\sqrt{321}}{963}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 711 ki te \frac{963}{963}.
\frac{711\times 963-56644\sqrt{321}}{963}
Tā te mea he rite te tauraro o \frac{711\times 963}{963} me \frac{56644\sqrt{321}}{963}, me tango rāua mā te tango i ō raua taurunga.
\frac{684693-56644\sqrt{321}}{963}
Mahia ngā whakarea i roto o 711\times 963-56644\sqrt{321}.