Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

711+196\times \frac{34}{12\sqrt{321}}
Tauwehea te 46224=12^{2}\times 321. Tuhia anō te pūtake rua o te hua \sqrt{12^{2}\times 321} hei hua o ngā pūtake rua \sqrt{12^{2}}\sqrt{321}. Tuhia te pūtakerua o te 12^{2}.
711+196\times \frac{34\sqrt{321}}{12\left(\sqrt{321}\right)^{2}}
Whakangāwaritia te tauraro o \frac{34}{12\sqrt{321}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{321}.
711+196\times \frac{34\sqrt{321}}{12\times 321}
Ko te pūrua o \sqrt{321} ko 321.
711+196\times \frac{17\sqrt{321}}{6\times 321}
Me whakakore tahi te 2 i te taurunga me te tauraro.
711+196\times \frac{17\sqrt{321}}{1926}
Whakareatia te 6 ki te 321, ka 1926.
711+\frac{196\times 17\sqrt{321}}{1926}
Tuhia te 196\times \frac{17\sqrt{321}}{1926} hei hautanga kotahi.
\frac{711\times 1926}{1926}+\frac{196\times 17\sqrt{321}}{1926}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 711 ki te \frac{1926}{1926}.
\frac{711\times 1926+196\times 17\sqrt{321}}{1926}
Tā te mea he rite te tauraro o \frac{711\times 1926}{1926} me \frac{196\times 17\sqrt{321}}{1926}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1369386+3332\sqrt{321}}{1926}
Mahia ngā whakarea i roto o 711\times 1926+196\times 17\sqrt{321}.