Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{71}{910}=0.895^{3x}
Whakawehea ngā taha e rua ki te 910.
0.895^{3x}=\frac{71}{910}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(0.895^{3x})=\log(\frac{71}{910})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
3x\log(0.895)=\log(\frac{71}{910})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
3x=\frac{\log(\frac{71}{910})}{\log(0.895)}
Whakawehea ngā taha e rua ki te \log(0.895).
3x=\log_{0.895}\left(\frac{71}{910}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{71}{910})}{3\ln(\frac{179}{200})}
Whakawehea ngā taha e rua ki te 3.