Whakaoti mō x
x=\frac{150000\ln(3)-50000\ln(140)}{433}\approx -190.046831017
Whakaoti mō x (complex solution)
x=-\frac{i\times 100000\pi n_{1}}{433}+\frac{150000\ln(3)}{433}-\frac{50000\ln(140)}{433}
n_{1}\in \mathrm{Z}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{700}{135}=e^{-0.00866x}
Whakawehea ngā taha e rua ki te 135.
\frac{140}{27}=e^{-0.00866x}
Whakahekea te hautanga \frac{700}{135} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
e^{-0.00866x}=\frac{140}{27}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(e^{-0.00866x})=\log(\frac{140}{27})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
-0.00866x\log(e)=\log(\frac{140}{27})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-0.00866x=\frac{\log(\frac{140}{27})}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
-0.00866x=\log_{e}\left(\frac{140}{27}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{140}{27})}{-0.00866}
Whakawehea ngā taha e rua o te whārite ki te -0.00866, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}