Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{700}{135}=e^{-0.00866x}
Whakawehea ngā taha e rua ki te 135.
\frac{140}{27}=e^{-0.00866x}
Whakahekea te hautanga \frac{700}{135} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
e^{-0.00866x}=\frac{140}{27}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\log(e^{-0.00866x})=\log(\frac{140}{27})
Tuhia te tau taupū kōaro o ngā taha e rua o te whārite.
-0.00866x\log(e)=\log(\frac{140}{27})
Ko te taupū kōaro o tētahi tau ka hīkina ki tētahi pū ko te pū whakarea ki te taupū kōaro o taua tau.
-0.00866x=\frac{\log(\frac{140}{27})}{\log(e)}
Whakawehea ngā taha e rua ki te \log(e).
-0.00866x=\log_{e}\left(\frac{140}{27}\right)
Mā te tikanga tātai huri pūtake \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{140}{27})}{-0.00866}
Whakawehea ngā taha e rua o te whārite ki te -0.00866, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.